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Summary
■ A formulation of the dynamics of subsurface storage, free

of calibration parameters, is presented.

■ The subsurface storage is parametrised using cathment

scale information such as recession data (Λ) and mean

annual runoff (𝑀𝐴𝑅).

■ No loss in precision wrt simulated runoff is found using the

new routine.

■ Recessions are better simulated, suggesting more realistic

groundwater dynamics

■ The approach inspires searching for a method for updating

the subsurface storage 𝑆 (and thereby Qsim) from Qobs
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«The important hydrological action 

takes place underground» (Beven, 2001)

■ There is a (quite a) gap between theoretical (Dupuit-

Boussinesq, Darcy) and conceptual (operational) 

formulations of the hydrological subsurface. 

■ Countless concepts are presented for modelling the

subsurface, recognizing that thats where the dynamics of

runoff is formed. 

■ How can we close this gap and what are the «physically

based equations for hydrological behaviour at the

catchments scale»? (Kirchner, 2006)
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DDD model
-a parameter parsimonius rainfall-runoff

model (Skaugen and Onof, 2014, Skaugen et 

al. 2015)

- runoff dynamics are modelled by unit 

hydrographs arranged in parallell, turned on

and off according to level of saturation

- The paramters of the unit hydrographs are

determined from observed data, no

calibration
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Rain and Snowmelt

Subsurface: saturated

and unsaturated zone.

Right:  simulated subsurface

moisture distribution in 

hillslope

Snow distribution: accumulation ,

melt  and snow-free area . 

10 elevation zones.

Input: precipitation and 

temperature

10 elevation zones.

P, T,..

S(t)

D(t)

Runoff dynamics: UHs for 

hillslopes and river network

X(t) distributed in time by UHs conditioned on subsurface state, S
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Subsurface in the DDD
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EA(t)- evapotranspiration

G(t)- input rain/snowmelt

Z(t)- actual soilmoisture

D(t)- volume unsaturated zone (soilwater)

S(t)- volume saturated zone (groundwater)

X(T)- water released to S(t) and runoff

Excess water: 𝑋(𝑡) = 𝑀𝑎𝑥
𝐺 𝑡 +𝑍 𝑡

𝐷 𝑡
− 𝑅, 0 𝐷(𝑡).        

Groundwater: 
𝑑𝑆

𝑑𝑡
= 𝑋(𝑡) − 𝑄(t).                                 

Soil water content: 
𝑑𝑍

𝑑𝑡
= 𝐺 𝑡 − 𝑋 𝑡 − 𝐸𝑎(𝑡).                                      

Soil water zone:  
𝑑𝐷

𝑑𝑡
= −

𝑑𝑆

𝑑𝑡
,    

Q(t)- runoff

R - (field capacity: 30% of D)
M- subsurface capacity is calibrated!
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Subsurface in DDD
2-D representation:
x: length of hillslope (entire catchment is represented as a hillslope)

z: moisture varying with (relative) depth
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3.9.2009_0900 def. 36.8mm

M

𝑆

𝐷

t=t0+36h
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Problems of current subsurface formulation

1) M is an extreme value (hard to estimate)

2) M is a calibration parameter

3) The fluctuations of 𝑆 are uniformly distributed, each level

of storage is equally probable. Is that a probable model??

New formulation:

1) As in previous formulation, subsurface storage and runoff

have a strong link (recession analysis)

2) We estimate the mean of the distribution of 𝑆(𝑡), 𝑚𝑆, less 

uncertainty compared to an extreme value (M).

3) We estimate 𝑚𝑆 from data; no calibration
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Recession analysis; a classic, but still 

underexplored source of information.

■ In DDD recession, sampled from:

is used to determine:

1. subsurface wave velocites, i.e assigning scale to the UHs 

for different levels of saturation

2. the frequency distribution of subsurface storage
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𝛬 = 𝑙𝑜𝑔(𝑄 𝑡 ) − 𝑙𝑜𝑔(𝑄 𝑡 + 𝛥𝑡 )
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A gamma distribution models the

distribution of 𝚲
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• 𝛬 appears to be a 

quite robust 

recession

characteristic. Its

distribution is quite

insensitive to 

whether we allow

precipitation on

day 𝑡 + 𝛥𝑡 or not
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Assumption:the distribution of S is a scaled version 

to that of the recession characteristic Λ
The distribution of                                                        is modeled by a two 

parameter gamma distribution (shape and scale).

𝑓 Λ =
1

𝛽𝛼Γ(𝛼)
Λ𝛼−1exp(−  Λ 𝛽)

𝑓 S =
1

𝜂𝛼Γ(𝛼)
S𝛼−1exp(−  S 𝜂)

Scale parameter:  𝜂 =  𝛽 𝑐
and 𝑐 =   Λ 𝑚𝑠

Shape parameters are equal: α

All we need is an estimate of 𝑚𝑠!

𝑆 𝑡 =
)𝑄(𝑡

1 − 𝑒 )−Λ(t

Storage, S(t), sampled by assuming that

𝛬(𝑡) is the parameter of a linear reservoir. 

𝛬 = 𝑙𝑜𝑔(𝑄 𝑡 ) − 𝑙𝑜𝑔(𝑄 𝑡 + 𝛥𝑡 )



Norges vassdrags- og energidirektorat

The average recession  𝚲, represents a 

subsurface state of mean storage

(𝒎𝑺)

■ Unit hydrograph in a state of mean storage: 

𝑢 Λ(𝑡) =  Λ𝑒
− Λ 𝑡−𝑡0

■ Weights distributing impulse in a state of mean storage:

𝜇( Λ)𝑗 =  
𝑗−1 𝛥𝑡

𝑗 𝛥𝑡

𝑢 Λ 𝑡 𝑑𝑡 𝑗 = 1. . 𝐽,  𝜇( Λ)𝑗 = 1

■ 𝐽 is the tempopral scale of 𝑢 Λ(𝑡)
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Steady-state mean annual runoff

represents mean storage (𝒎𝑺)

Excess water input 𝑋 necessary to maintain mean annual

runoff (𝑀𝐴𝑅)

𝑋 𝑚𝑚/𝑑𝑎𝑦 = (1000 ∗ 𝑀𝐴𝑅  𝑚3 𝑠 ∗ 86400 𝑠 )/ 𝐴 𝑚2
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What is left in the soils (𝑆𝑆) at steady-

state?

■ The S curve is obtained after 𝐽 days of input 𝑋. Balancing

the volumes gives us : 𝐽 ∙ 𝑋 = 𝑆𝑆 + 𝑄𝑆
where:

𝑄𝑆 =  𝑘=1
𝐽  𝑗=1

𝑘 𝑋 ∙ 𝜇( Λ)𝑗 (runoff) and 

𝑆𝑆 =  𝑘=1
𝐽−1  𝑗=𝑘+1

J
𝑋 ∙ 𝜇( Λ)𝑗 = 𝑚𝑆 (storage)

Recall information needed:  Λ and 𝑀𝐴𝑅
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Results: New groundwater dynamics
■ Comparing performances of DDD with 𝜃𝑀 (calibrated) and 

𝑚𝑆 (estimated)

■ Tested for 73 catchments, with no corrections of

meteorology
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NSE KGE KGE
_r

KGE_b KGE_g

DDD_
𝑚𝑆

0.68 0.69 0.83 0.85 1.0

DDD_
𝜃𝑀

0.66 0.70 0.85 0.83 1.04



Norges vassdrags- og energidirektorat

16

10.09.2015

RMSE 
mean Λ

RMSE 
std Λ

DDD_𝑚𝑆 0.275 0.389

DDD_𝜃𝑀 0.511 0.392

𝛬 = 𝑙𝑜𝑔(𝑄 𝑡 ) − 𝑙𝑜𝑔(𝑄 𝑡 + 𝛥𝑡 )Mean and standard deviation of
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Summary
■ A formulation of the dynamics of subsurface storage, free

of calibration parameters, is presented.

■ The subsurface storage is parametrised using cathment

scale information such as recession data (Λ) and mean

annual runoff (𝑀𝐴𝑅).

■ No loss in precision wrt simulated runoff is found using the

new routine.

■ Recessions are better simulated, suggesting more realistic

groundwater dynamics

■ The approach inspires searching for a method for updating

the subsurface storage 𝑆 (and thereby Qsim) from Qobs
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Thank you for your attention!
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Distance distributions and runoff dynamics

•Creating equidistant buffers around the river network (blue) is a way to 

determine the distribution of distances from a point in the catchment to its nearest

river reach.
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The distance distribution is exponential!
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•For more than 120 catchments in Norway, the empirical DD is well

approximated by an exponential distribution

𝑓 𝑑 = 𝛾𝑒−𝛾𝑑, 𝛾 = 1/  𝑑
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The distance distribution is exponential!
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•For more than 120 monitored catchments in Norway, the empirical DD is 

well aproximated by an exponential distribution, big and small
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The distance distribution is exponential!
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•For more than 120 monitored catchments in Norway, the empirical DD is 

well aproximated by an exponential distribution, but the parameter varies
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Another way to visualize the distance

distribution.. 
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•The consecutive

areas for each

Δd in the DD are

plotted.

•The ratio 𝜅
between

consecutive

areas is constant

(feaure of the

exponential

distribution)

•Is this the shape

of the aquifer?
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From Distance Distributions to Unit 

Hydrographs-assigning velocities

■ If waves of water travel with a constant 

wave velocity 𝑣, (celerity), the 

exponential distribution of distances 

becomes an exponential distribution of 

travel times, i.e. the variable 𝑑 is 

replaced with 𝑑/𝑣 with parameter

ξ = −log(𝜅)/Δ𝑡

■ A travel time distribution constitutes a 

Unit Hydrograph (UH).

■ The UH distributes the input 

(rain/snowmelt) in time to the outlet 

where we observe it as runoff. (The UH 

is basically a set of weights)
24
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The derivative of           ,          is the unit 

hydrograph           
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For one catchment: different celerities gives different 

temporal scales to the unit hydrographs, but the shape

remains the same and uniqe to that catchment
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How is a linear reservoir perceived?
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Linear reservoirs and distance

distributions

■ The constancy (𝜅) of the ratio between consecutive areas (distance

distribution) also holds for consecutive runoff volumes (travel time 

distribution) because of its exponential shape.

■ The constancy is also feature of the (super famous) linear reservoir

■ Hence, a linear reservoir with runoff coefficient φ;

𝑄 𝑡 = 𝜑𝑆 𝑡 , where 𝑆(𝑡) is the reservoir (storage) can

also be expressed as 

𝑄(𝑡) = 1 − 𝜅 𝑆(𝑡) where 𝜅 can be expressed in terms 

of the parameter of the exponential travel time distribution

ξ = −log(𝜅)/Δ𝑡

■ The linear reservoir model is a result of exponential distance

distributions
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