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In search of catchment scale physics-
estimating catchment scale groundwater
dynamics from recession analysis and mean
annual runoff
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Summary

A formulation of the dynamics of subsurface storage, free
of calibration parameters, is presented.

The subsurface storage is parametrised using cathment
scale information such as recession data (/A\) and mean
annual runoff (MAR).

No loss in precision wrt simulated runoff is found using the
new routine.

Recessions are better simulated, suggesting more realistic
groundwater dynamics

The approach inspires searching for a method for updating
the subsurface storage S (and thereby Qsim) from Qobs
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«The important hydrological action
takes place underground» even, 200

There is a (quite a) gap between theoretical (Dupuit-
Boussinesq, Darcy) and conceptual (operational)
formulations of the hydrological subsurface.

Countless concepts are presented for modelling the
subsurface, recognizing that thats where the dynamics of
runoff is formed.

How can we close this gap and what are the «physically
based equations for hydrological behaviour at the
catchments scale»? (irchner, 2006)
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Input: precipitation and
temperature
10 elevation zones.

Snow distribution: accumulation |

melt and snow-free area .
10 elevation zones.

Subsurface: saturated s

and unsaturated zone.
Right: simulated subsurface
moisture distribution in
hillslope

M

81

Runoff dynamics: UHs for
hillslopes and river network
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PT,..

v Rain and Snowmelt

=g

A

DDD model

-a parameter parsimonius rainfall-runoff
model (Skaugen and Onof, 2014, Skaugen et
al. 2015)

- runoff dynamics are modelled by unit
hydrographs arranged in parallell, turned on
and off according to level of saturation

- The paramters of the unit hydrographs are
determined from observed data, no
calibration

D(t)

(1)

+ X(t) distributed in time by UHs conditioned on subsurface state, S
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Subsurface in the DDD

EA(t)- evapotranspiration

G(t)- input rain/snowmelt

Z(1)- actual soilmoisture

D(t)- volume unsaturated zone (soilwater)

A S(t)- volume saturated zone (groundwater)
1 1 X(T)- water released to S(t) and runoff
D(t)
M y EXcess water: X(t) = Max {G(g?é(t) — R, O} D(t).
} o 1 Groundwater: % = X(t) — Q(t).
’ s Soil water content: % =G(t) — X(t) — Ea(t).

T A Soil water zone: 22 = —E,

dt dt

M- subsurface capacity is calibrated! Q(t)- runoff
R - (field capacity: 30% of D) :
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Saturation level

Subsurface in DDD

2-D representation:

X: length of hillslope (entire catchment is represented as a hillslope)
Z: moisture varying with (relative) depth

Saturation in groundwater zone
Top level shows overiand flow
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Problems of current subsurface formulation

M is an extreme value (hard to estimate)
M is a calibration parameter

The fluctuations of S are uniformly distributed, each level
of storage is equally probable. Is that a probable model??

New formulation:

As In previous formulation, subsurface storage and runoff
have a strong link (recession analysis)

We estimate the mean of the distribution of S(t), mg, less
uncertainty compared to an extreme value (M).

We estimate mg from data; no calibration
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Recession analysis; a classic, but still
underexplored source of information.

In DDD recession, sampled from:

A =1og(Q(t)) — log(Q(t + At))

IS used to determine:

1. subsurface wave velocites, i.e assigning scale to the UHs
for different levels of saturation

2. the frequency distribution of subsurface storage
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A gamma distribution models the
distribution of A

.................
.....
ﬁﬁﬁﬁﬁ
....

« Aappearstobea ;-
quite robust ]
recession
characteristic. Its
distribution is quite _|
Insensitive to i
whether we allow ..
precipitation on
day t + At or not
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Assumption:the distribution of Sis a scaled version

to that of the recession characteristic A
The distribution of 4 = log(Q(t)) — log(Q(t + At)) is modeled by a two
parameter gamma distribution (shape and scale).

f) = A" exp(—A/B)

peT(a)

f(S) = S*Lexp(—S/n)

ner(a)

Scale parameter: n = f/c
and c = A/mg

Shape parameters are equal: a

All we need is an estimate of m,!

Norges vassdra
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Storage, S(t), sampled by assuming that
A(t) is the parameter of a linear reservoir.

Q(t)

S(t) = T~ oA




The average recession A, represents a
subsurface state of mean storage

(ms)
Unit hydrograph in a state of mean storage:

uz(t) = Ae Alt—to)
Weights distributing impulse in a state of mean storage:

(j)At
)@= [ w@de =10 ) ;=1

(-4t

J is the tempopral scale of uz(t)
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Steady-state mean annual runoff
represents mean storage (mg)

Excess water input X necessary to maintain mean annual
runoff (MAR)

X[mm/day] = (1000 * MAR[m3/s] * 86400[s])/ A[m?]

Effective rainfall of a duration = 1, fime

i H E H H H E E 12
pre
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What is left in the solls (S¢) at steady-

state?

The S curve is obtained after J days of input X. Balancing

the volumes gives us : J - X = Sg + Qg
where:

Qs = XI_, Y%, X -u@); (runoff) and
Ss = Yhoq Zr—ie1 X - () ; = mg (storage)

Recall information needed: A and MAR
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Results: New groundwater dynamics

Comparing performances of DDD with 8,, (calibrated) and
mg (estimated)

Tested for 73 catchments, with no corrections of
meteorology

14
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Simulated mean Lambda
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Summary

A formulation of the dynamics of subsurface storage, free
of calibration parameters, is presented.

The subsurface storage is parametrised using cathment
scale information such as recession data (/A\) and mean
annual runoff (MAR).

No loss in precision wrt simulated runoff is found using the
new routine.

Recessions are better simulated, suggesting more realistic
groundwater dynamics

The approach inspires searching for a method for updating
the subsurface storage S (and thereby Qsim) from Qobs
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Thank you for your attention!
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Distance distributions and runoff dynamics

*Creating equidistant buffers around the river network (blue) is a way to
determine the distribution of distances from a point in the catchment to its nearest
river reach.
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Fraction

Fraction
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The distance distribution is exponential!

*For more than 120 catchments in Norway, the empirical DD is well

approximated by an exponential distribution

f(d) =ye™4,

Area distribution for catchment 168_2 Arealkm2]= 31.23 d_max[m]= 1908

d_m =(1/Exp_par)= 39622 ResSE_exp= 0.0139

Area dist. for soil 2_11 Arealkm2]= 105.15 d_max[m]= 2030

y=1/d

d_m =(1/Exp_par)= 377.86 ResSE_exp= 0.0085 Soil-zero dist= 3
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Fraction

Fraction
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The distance distribution is exponential!

*For more than 120 monitored catchments in Norway, the empirical DD is
well aproximated by an exponential distribution, big and small

Area dist. for soil 2_1{ Arealkm2]= 105.15 ¢_max[m]= 2030

d_m =(1/Exp_par)= 377.86 ResSE_exp= 0.0085 Soil-zero dist= 3

Area distribution for catchment 168 € Arealkm2]= 31.23 § max[m]= 1908

d_m =(1/Exp_par)= 396.22 ResSE_exp= 0.0139
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Fraction

Fraction
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The distance distribution is exponential!

*For more than 120 monitored catchments in Norway, the empirical DD is
well aproximated by an exponential distribution, but the parameter varies

Area distribution for catchment 168_2 Arealkm?2]= 31.23 d_max[m]= 1908 il 2 11 Arealkm?2]= 105.15 d_max]m]= 2030

d_m =(1/Exp_par)= 396.22 RpsSE_exp= 0.0139 d_m =(1/Exp_par)= 377.86 BesSE_exp= 0.0085 Soil-zero dist= 3
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Another way to visualize the distance
distribution..

*The consecutive
areas for each
Ad in the DD are
plotted.

*The ratio k
between
consecutive
areas is constant
(feaure of the
exponential
distribution)

*Is this the shape
of the aquifer?
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From Distance Distributions to Unit
Hydrographs-assigning velocities

If waves of water travel with a constant
wave velocity v, (celerity), the
exponential distribution of distances
becomes an exponential distribution of
travel times, i.e. the variable d is
replaced with d /v with parameter

¢ = —log(k)/At
A travel time distribution constitutes a
Unit Hydrograph (UH).
The UH distributes the input
(rain/snowmelt) in time to the outlet
where we observe it as runoff. (The UH
IS basically a set of weights)
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Fraction

1.0

o]
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Area dist. for soil 2_11 Arealkm2]= 105.15 d_max[m]= 2030

d_m =(1/Exp_par}= 377.86 ResSE_exp= 0.0085 Soil-zero dist= 3

o |
=}

-- exponential

Q. () = f an(®)dt,  Qp(maxT,) =1

o
The derivative of@x () ,4x(t) is the unit
hydrograph UH,
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For one catchment: different celerities gives different
temporal scales to the unit hydrographs, but the shape
remains the same and uniqge to that catchment
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How iIs a linear reservoir perceived?

[(1)
R \
A4
dS
' (1 dS — 1(1)- Q1)
:k Water level '_/ S (1) d’ (
0/, Q([)
Al — —»0 / .*"'.
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Linear reservoirs and distance
distributions

The constancy (k) of the ratio between consecutive areas (distance
distribution) also holds for consecutive runoff volumes (travel time
distribution) because of its exponential shape.

The constancy is also feature of the (super famous) linear reservoir
Hence, a linear reservoir with runoff coefficient ;

Q(t) = @S(t), where S(t) is the reservoir (storage) can
also be expressed as

Q(t) = (1 — x)S(t) where k can be expressed in terms
of the parameter of the exponential travel time distribution
¢ = —log(k)/At
The linear reservoir model is aresult of exponential distance
distributions
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