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Sagehen Creek: 27 km?, 1900-2700 m

Snow-dominated subalpine forest ecosystem

Mediterranean climate: almost no rainfall April-
October (during snowmelt and summer transpiration)
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Sagehen Creek: 27 km?2, 1900-2700 m

Stream stage recorded at 6 locations (& 3 tributaries),

2 groundwater well transects, 5 weather stations,
3 SNOTEL sites spanning full altitude range of basin
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July: ET, driven by
solar forcing,
pumps down
groundwater levels
and stream flow
during daytime.

90° dynamical
phase lag between
ET and ground-
water levels or
Stream staqe.




Morning: when ET exceeds recharge from uplands, riparian
aquifer storage (and thus stream discharge), begin to decline




Mid-day: fastest decline
in riparian aquifer storage
and stream discharge




Evening: riparian aquifer storage and stream discharge
reach minimum, as evaﬁotransplratlon declines and
recharge from uplands

comes into balance wit




,_._39 Night: stream discharge rebounds
Z—_ as groundwater flow from uplands

refills riparian aquifer
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Night: stream discharge rebounds
as groundwater flow from uplands
refills riparian aquifer
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Changes in groundwater levels (note reversed scale)
are synchronized with solar flux and sap flow
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Snowmelt at
Sagehen Creek

April: snowmelt
raises groundwater
levels and stream
flow each day

90° dynamical
phase lag between
snowmelt and
groundwater levels
or stream stage




streamflow

snowmelt-induced cycles

ET-induced cycles

combined snowmelt-
and ET-induced cycles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
days

Snowmelt and ET
cycles have
opposite phase,
and cancel one
another when
their amplitudes
match, as
dominance shifts
from snowmelt to
ET.
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Diel cycle index:

correlation between solar flux and
change in groundwater or stream stage

precipitation + snowmelt
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Diel Cycle Index shows
transitions from snowmelt
to ET cycles.

Groundwater cycle shifts

7 rapidly, coinciding with

local loss of snowpack.
Stream cycle shifts
gradually, as snowpack
retreats toward top of basin.

Groundwater cycles reflect
the local balance between
snowmelt and transpiration.
Stream cycles integrate this
balance over the
catchment.
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Diel cycle index:
correlation between solar flux

and change in stream stage
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Streamflow
correlations with solar
flux shift from positive
(snowmelt cycles) to
negative (ET cycles)
later at higher
altitudes, reflecting
seasonal snowpack
retreat.

Streams and ground-
waters integrate
(literally, in both time
and space) eco-
hydrological fluxes.
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MODIS gives us (almost) daily coverage,
but at much lower resolution...




NDSI (Snow Index)
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Diel cycle index values
(blue dots) shift from +1
(snowmelt) to -1 (ET)
shortly after MODIS
snow index (blue line)
shows melt-out of
seasonal snowpack
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Diel cycle index values
(blue dots) shift back
from -1 (ET) toward +1
(snowmelt) several
months before MODIS
snow index (blue line)
shows re-establishment
of seasonal snowpack
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Different vegetation scales:
different rock outcrops

Sagehen Creek
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Streams and lakes are mirrors of the landscape



Forecast change in Sierra Nevada snowpack:
By mid-century (2020-2050): -26% to -40%
By end of century (2070-2100): -29% to -89%

Hayhoe, Cayan, et al., Emissions pathways, climate change, and impacts on California,
Proceedings of the National Academy of Sciences, 101:12422-12427 (2004)

Sarah Godsey
Christina Tague



Compare peak snow accumulation
each winter (from snow pillow data)
with minimum streamflow the
following summer

Snow pillow (weighs ——
overlying snowpack)

Gauging station —
(measures streamflow)




Minimum Annual Flow, Q (% of normal)
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HYDROLOGICAL PROCESSES

Hydrol. Process. 28, 5048-5064 (2014)

Published online 24 August 2013 in Wiley Online Library
(wileyonlinelibrary .com) DOT: 10.1002/hyp.9943

Effects of changes in winter snowpacks on summer low flows:
case studies in the Sierra Nevada, California, USA

S. E. Godsc:)-*,":‘ J. W. Kirchner” and C. L. Taguc:3

Summer low flows are strongly correlated with
peak winter snowpacks

Many of these streams are at risk of running dry in
summer (at their current gauging station locations)
if snowpacks shrink to ~50% of 'normal’

California

S
100 km .
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Low flow runoff (% of normal)

Sagehen Creek low flows 'remember' snowmelt inputs from multiple previous winters
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Streams and lakes are mirrors of the landscape
... and remember its history, too
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When rivers flood, surrounding rivers often flood at the same time

"""""""

2005 Flood Tyrol. Credit: TU Wien/ASI/Land Tirol/BH Landeck

The synchronization of floods amplifies their impacts and
financial risks

Q: over what scales are flood risks synchronized?

43



The European Flood Database provides unique spatial coverage
of floods, but only information on -
timing, not magnitude

Jan

>4000 stations
Period 1960-2010
Dates of annual floods

Basins areas ~10-10%km

See e.g.

Bloschl et al. (2017) Science '
Hall et al. (2014, 2018) HESS (2015) PIAHS o ) ag E
Berghuijs et al. (2019) GRL # E
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Flood synchrony scale is maximum radius around
an individual river gauge within which at least half of
the other river gauges also record flooding almost

1
6 July 1997 £ 7 days
station without flood 70 km, flood synchrony
scale for Artibai River
. station with flood 0 O 0.8} .
@ Artibai River : o5 352 km, flood synchro_ny
% Jaworzyna River E S 06 scale for Jaworzyna River
e " 50% threshold
demarcation of the o4 T TN T T
O 5 g
flood synch. scale r 52 04+
@ S 8
S @
@. £ 24y
b
d 0 . :
L9 900 km 0 200 400 600 800 1000

radius [km]

Berghuijs et al. (2019) GRL 4



Floods extend far beyond the the scale of individual basins
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Flood synchrony scales have grown by ~50% over
1960-2010, but with regional differences
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Conclusions

« Annual floods are often synchronized over hundreds of kilometers, but strong regional
differences exist in the flood synchrony scale.

 Flood synchrony scale have been growing over the period 1960-2010
* Years with above-average flood synchrony often follow one another

« Flood synchrony patterns are largely disconnected from precipitation synchrony patterns
(and the scale of synchronized precipitation is much larger)

References
Berghuijs et al. (GRL, 2019) Growing spatial scales of synchronous river flooding in Europe.

Berghuijs et a/. (WRR, 2019) The relative importance of different flood-generating mechanisms across
Europe.



Seasonal patitining of pitr'ti;e ﬁé@[h]@ andiET
inferred from end-member’splittingfanalysis
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What we tell people that we study:
“where water goes when it rains”
What we actually study instead:
where streamwater comes from!

End-member mixingq analysis: what fraction of
Mixture M comes from Source A vs. Source B?

Source B

Mixture M
(usually streamflow)



End-member mixing quantifies:
fraction of M coming from A = (Flux A->M) / (Total flux in M)

What we want to know:
fraction of A going to M = (Flux A->M) / (Total flux in A)

= fraction of M coming from A _Total flux in M

Total flux in A

Source B

Flux from
BtoM

Mixture M
(usually streamflow)



End-member
splitting

\

Output X

Fraction of A going to X
=1 - fraction of A going to Vi
=1 — [ fraction of M coming from A]

Total flux in M
Total flux in A

times

Source B

Flux from End-member
B to M / mixing
Mixture M

(usually streamflow)



Output X

Source A

Mixture M
(usually streamflow)

Output Y

Source B

Blue

/ water



Proof-of-concept demonstration:
watershed 3 at Hubbard Brook
(|sotope data from Green et al., 2015)
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B Soil water | 0
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“ 100 1
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Figure 1. Map of Watershed 3 at the Hubbard Brook Experimental Forest

and the location of water sampling sites for this study 2007 2008 2009
year

water fluxes mm/d
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Superimposing all years on top of
one another reveals:

~ Strong isotopic separation between
rainy and snowy season
precipitation.

Stream gradually shifts toward
snowy end member during winter
and toward rainy end member
during summer.

Stream water fluxes show strong
snowmelt peak in March-May and
transpiration trough in growing
season (June-September).

‘

/



End-member mixing and splitting at Hubbard Brook Watershed 3

Snowy season: Dec. - Mar. (4 months) Rainy season: Apr. - Nov. (8 months)

End-member mixing:

Rainy-season

Snowy-season

i 7+13% from 93+13% from i
FX? 1c 'Eﬁa;m snowy-season P rainy-season P pgr:scgtga;%\ ~ h a If Of S u m m e r
-90.2+4.4%0 -54.7+2.4%0

(rainy-season)

% R -
%% streamflow originates
oé_g_"‘- as winter (snowy-
%, “**o:‘ season) precipitation.
2
©

(Note that snowmelt
pulse occurs during
rainy season, not

47+8% from 53+8% from 41+7% from 59+7% from

snowy- rainy- snowy- rainy- =
season P season P season P season P WI nte r S n owy
Snowy-season Rainy-season season )
streamflow streamflow e
277+7 mm 593+10 mm

-71.5%+1.3%0 -69.4+1.2%0



End-member mixing and splitting at Hubbard Brook Watershed 3

Snowy season: Dec. - Mar. (4 months) Rainy season: Apr. - Nov. (8 months)

End-member mixing:

Rainy-season

Snowy-season

iesitat] 7+13% from 93+13% from it .
F:Le 1c Ega:;m snowy-season P rainy-season P pgrfscggam:: ] h a If Of Wi nte r
-90.2+4.4%o0 -54.7+2.4%0

(snowy-season)

2 &
%% . streamflow originates
oé";’?&d\- as summer (rainy-
%, “*’9:\ season) precipitation.
%
©

(Must come from
groundwater storage)

47+8% from 5318% from 41+7% from 59+7% from
snowy- rainy- snowy- rainy-

season P season P season P season P
Snowy-season Rainy-season
streamflow streamflow
277+7 mm 593+10 mm

-71.5%+1.3%0 -69.4+1.2%0



End-member mixing and splitting at Hubbard Brook Watershed 3

Snowy season: Dec. - Mar. (4 months) Rainy season: Apr. - Nov. (8 months)

End-member splitting:

Rainy-season

Snowy-season

precipitation oWy S0ason P rainy-sentonP precipitation ~ 2/3 of winter
_90_2i4_z,o%> -54.7+2.4%o ( snowy-seas on)
A precipitation
oé_gf’: eventually becomes
“ % summer (rainy-
A\ season) streamflow.

~ 1/3 becomes snhowy-
season streamflow.

47+8% from 5318% from 41+£7% from  59+7% from
snowy- rainy- snowy- rainy-

season P season P season P season P Ve ry I ittl e
Snowy-season Rainy-season -
streamflow streamflow eva pOtra ns p iIres.
277+7 mm 593+10 mm

-71.5%+1.3%0 -69.4+1.2%0



End-member mixing and splitting at Hubbard Brook Watershed 3

Snowy season: Dec. - Mar. (4 months) Rainy season: Apr. - Nov. (8 months)

End-member splitting:

Rainy-season

Snowy-season

predpttation bt P oL precipitation ~ 1/2 of summer
-90.214.12:0%\"/ -54.7+2.4%0 (rai ny_seaso n)
SR 5 precipitation
%, %% evapotranspires.
J—\% ‘{%’o <\

%oooo ~ 1/3 eventually
becomes summer
streamflow.

478% f;:'_om 53£8% yf_rom 4a1£7% 1;r_om 59£7% ;‘_rom ~ 1/6 becomes sSNowy-
o I SLCET
5947 o 305210 mm

-71.5%+1.3%0 -69.4+1.2%0



End-member mixing and splitting at Hubbard Brook Watershed 3

Rainy season: Apr. - Nov. (8 months)

End-member splitting:
Rainy-season

Snowy season: Dec. - Mar. (4 months)

Snowy-season 7+13% from 93+13% from
precipitation =c il i precipitation t
4171+11T mm snowy-season P rainy-season F 945+19 mm AI m OS a I I

& #7247 ayapotranspiration
‘3’&%_:’%6 " comes from rainy-
%%, season precipitation.
A% "g,r <\
%, % Almost none comes
©

from snowy-season
precipitation.

47+8% from 53+8% from 41+£7% from  59+7% from
snowy- rainy- snowy- rainy-

season P season P season P season P
Snowy-season Rainy-season
streamflow streamflow
277+7 mm 593+10 mm

-71.5%+1.3%0 -69.4+1.2%0



250
200 A
150
100

water flux (mm/month) < precipitation a

ok ¢ streamflow

’ L Y
’ L Y
B
0-'0';5 O “ o-'o‘-o
Oess’ ‘0- o’
o SO = ==

100

Snowy-season

,8<
¢__‘¢F\’ inQ(%)’¢‘¢’¢__¢, +,¢_¢
‘$"¢ - Rainy-season

Pin Q (%) b

Partitioning of rainy-season
P among monthly Q's

Partitioning of snowy-season d
P among monthly Q's
(%/month)

| ! I 1 | I

| 1
J FMA MJ J A S OND

End-member mixing and splitting by month
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End-member mixing and splitting by month

End-member mixing:

Fraction of streamwater coming from
rainy-season precip. is lowest (~1/3)
during snowmelt and highest (~90%)
during growing season.

End-member splitting:

Fraction of rainy-season precip.
becoming streamflow is highest
during snowmelt and lowest during
growing season! (Increase in flow
more than offsets decrease in rainy-
season proportion in that flow.)
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End-member mixing and splitting by month

End-member mixing:

Fraction of streamwater coming from
rainy-season precip. is lowest (~1/3)
during snowmelt and highest (~90%)
during growing season.

End-member splitting:

Fraction of rainy-season precip.
becoming streamflow is highest
during snowmelt and lowest during
growing season!

There’s a second peak after the growing
season (modest flows but high
percentage of rainy season precip.)



250 {water flux (mm/month) ¢ precipitation a
200 H Pk < streamflow
150 . " ‘\
—O—-- -‘0-._ _-'O“""O"'-.
100 0 -7fn-0= gy ST 0000
I Y B L’
=0 ¢ Rl PN S
0 | | 1 I | | I | | | |
100
80 Snowy-season ’I:J-., # #
16, PinQ(%) I O *o T
604 * Q. Yo--9 ¢
40 ‘# - -+ - Rainy-season
20 Pin Q (%) b

0 | | I I I | I | I | !
101 Partitioning of rainy-season C

8 1 P among monthly Q's

G (%/month)

4 —

2 -

0 | | I I I | I | | | |
gg: Partitioning of snowy-season d
30 - P among monthly Q's
25 - (%/month)

20
15
10
5 —
0 | ! I 1 |

| N —
J FMA MJ J A S OND

End-member mixing and splitting by month

End-member splitting:

Fraction of snowy-season precip.
becoming streamflow is highest
during snowmelt (no surprise) and
lowest during growing season...

... but increases again after the growing
season (substantial flows with small
percentage of winter precipitation in
them).



Requirements:

Need two isotopically distinct
end-members (sources):

47+8% from  53+8% from 4147%from  59+£7% from

T O - Winter vs. summer precipitation

- Snow vs. rain

- High vs. low-altitude precipitation

- High-intensity vs. low-intensity rainfall
Must jointly supply all the input.

Need reliable estimates of water fluxes.




Applications:

Can quantitatively partition (split) inputs
among any number of measured outputs plus
one unmeasured output (e.g., green water).

Snowy- rainy- SNOwWy- rainy-
season season P season

- Seasonal streamflow
-  Monthly streamflow
- High vs. low flows

- Groundwater vs. surface water-dominated
streams



Note: results elsewhere may differ!
Xylem water isotopes imply that many Swiss forests rely on winter precipitation, even in
mid-summer (Allen et al. 2019, HESS)

Sites (ranked by mean annual precipitation amount)
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Outlook, Summer 2019: Xylem water sampling in 12 catchments for
comparison with end-member splitting calculations.

24 forest plots x 3 species/plot
x 8 individuals/species
= ~600 xylem water isotope samples.




Drivers of hydrological response, inferred from
“Lab in the Field” isotopic and hydrochemical measurements
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Variable discharge conditions at the Erlenbach (Alptal)

Q =0.015 m3/s Q=0.7m3/s




Streamflow generation in steep catchments

Area:0.7km?2
Slope: 17°

Eﬂenbéch

Se

1.5L/s 700 L/s 10 000 L/s

A good process understanding is
crucial to develop robust
hydrological models for
mountainous catchments.

- Processes happen at short
time scales (hours to minutes)!

74
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von Freyberg et al., HESS, 2017 & 2018



Long-term isotope measurements at Erlenbach on timescales from
2x per month to 1440x per month (30-minute sampling)
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Chemical and isotopic
dynamics revealed by

“lab in the field”
measurements

von Freyberg et al.,
HESS, 2017 & 2018

P
(mm/10min)

iu]uh

L, MLLU_UJLL_
A S I, PO

-~

3
@ £\ [\ I\Mh. A

"_ v-w AN --\;\N‘V\l‘\l‘\i\r’w W\) WYY

M, MN‘\A!&J\N\F"\kL )

A WA

Sulpahte
(mg/L)

O

W"""W""'11 /Ww/‘ﬂi‘(“'mﬂw//

ﬁﬂ_.!

62H (%o)

WQ’.Q”

Py

® 0
*

Precipitation isotopes

52H (%o)

n ,\m ;"' \-.ﬂ-‘\m
: NS Wepgp irePt

-
‘c t“l.g*;
S o,: :

2017-03-15

2017-03-29

2017-04-12  2017-04-26 2017-05-10

60 £
Q
40 £
°
20



Hydraulic response functions vs. transit time distributions

Both catchments transmit hydraulic potentials much faster, with
much less dispersion, than they transport the water itself

HRF and TTD (1/day)

0.30 : : 0.50 : :
Hydraulic response function Hydraulic response function
0.25 - and transit time distribution and transit time distribution
Alp (47 km?) = 0.40- Erlenbach (0.7 km?)
0.20 - 2
— 0.30
=
0.1 Alp HRF (from daily streamflow) = Erlenbach HRF (from daily streamflow)
5 A5 Alp TTD (from daily 2H) E Badn Erlenbach TTD (from daily 2H)
| &
0.00 . l" > I.: o S Sx o= 2 N _
0 3 10 15 20 0 5 10 15 20

Lag time (days) Lag time (days)
(Note different scales...!)



Hydraulic response functions vs

. transit time distributions

HRF and TTD (1/hour)

On timescales of hours

Hydraulic response function
0.10 - and transit time distribution

Erlenbach (0.7 km?)
0.08
0.06 -
Erlenbach HRF (from hourly streamflow)
i Erlenbach TTD (from hourly °H)

O-OO | 1 1 1 1 T T | T T I T
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HRF and TTD (1/day)

On timescales of days

0.20

Hydraulic response function
and transit time distribution

Erlenbach (0.7 km®)

Erlenbach HRF (from daily streamflow)
Erlenbach TTD (from daily 2H)
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Lag time (days)

(Note different scales...!)
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