
The Impacts of Model Weighting on Quantifying
Hydrological Responses to Climate Change

Wuhan University

Presenter:

Advisor:
Co-author:

Hui-Min Wang

Jie Chen, Chong-Yu Xu
Hua Chen, Xiangquan Li

University of Oslo



Content

Research Purpose01

Study Area & Data02

Methodology03

Results04

Conclusion05



Research Purpose1

Multiple GCMs
（ Multi-model ensemble）

Downscaling Hydrological Model

Common way to investigate the climate change impacts:
(1) Downscale outputs of global climate model (GCM) into watershed scale; and
(2) Input downscaled data into hydrological model to project streamflow.

GCM Output

 How to deal with multi-model ensembles?

Common strategy:
equal weighting (model democracy)

GCMs

Climate Simulation Hydrological Simulation

 

 

J F M A M J J A S O N D J

Month

0

2000

4000

6000

8000

10000

D
is

ch
ar

ge
 (m

3
/s

)

 

  

 

  

 Problems of equal weighting

[1] Different performances among GCMs
[2] Interdependence between GCMs



Research Purpose1

Objectives:
 Assign weights to GCM simulations according to their ability to represent hydrological 

observations;
 Investigate the impacts of unequal weighting methods on the quantification of hydrological 

responses to climate change; and
 Assess the influences of the bias correction to GCMs on the performances of model weighting.

 There is a non-linear relationship between the climate and impact variables

The weights calculated based on climate variables may be ineffective in the 
hydrological impacts. 

Two problems in model weighting for impact studies:

 The impact variable is related to multiple climate variables

A trade-off among different climate variables needs to be decided in order to obtain a 
single set of weights for impact studies.
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Study Area2

Xiangjiang Watershed (China) Manicouagan-5 Watershed (Canada)

Area: 52150 km2

Annual Runoff: 2212 m3/s
Average Temperature: 17 ℃

Flow regime is hardly affected by the 
snow accumulation and snowmelt.

Area：24610 km2

Annual Runoff: 1020 m3/s
Average Temperature:  -1 ℃

Flow regime is significantly affected by 
the snow accumulation and snowmelt.
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Data2

Outputs of 29 GCMs taken from CMIP5 dataset
 Reference period: 1970-1999; Future Period: 2070-2099

 Emission scenario: RCP8.5

Modeling center Model name Resolution
(Lon. × Lat.) Modeling center Model name Resolution

(Lon. × Lat.)

CSIRO-BOM
ACCESS1.0 1.875°× 1.25°

MOHC
HadGEM2-CC 1.875°× 1.25°

ACCESS1.3 1.875°× 1.25° HadGEM2-ES 1.875°× 1.25°

BCC
BCC-CSM1.1 2.8°× 2.8° INM INM-CM4 2.0°× 1.5°

BCC-CSM1.1(m) 1.125°× 1.125°
IPSL

IPSL-CM5A-LR 3.75°× 1.9°
GCESS BNU-ESM 2.8°× 2.8° IPSL-CM5A-MR 2.5°× 1.25°
CCCMA CanESM2 2.8°× 2.8° IPSL-CM5B-LR 3.75°× 1.9°

NCAR
CCSM4 1.25°× 0.94°

MIROC
MIROC-ESM-CHEM 2.8°× 2.8°

CESM1(CAM5) 1.25°× 0.94° MIROC-ESM 2.8°× 2.8°

CMCC
CMCC-CMS 1.875°× 1.875° MIROC MIROC5 1.4°× 1.4°
CMCC-CM 0.75°× 0.75°

MPI
MPI-ESM-LR 2.8°× 2.8°

CMCC-CESM 3.75°× 3.7° MPI-ESM-MR 1.4°× 1.4°
CNRM-CERFACS CNRM-CM5 1.4°× 1.4°

MRI
MRI-ESM1 1.125°× 1.125°

CSIRO-QCCCE CSIRO-Mk3.6.0 1.8°× 1.8° MRI-CGCM3 1.1°× 1.1°
LASG-GESS FGOALS-g2 1.875°× 1.25° NCC NorESM1-M 1.875°× 1.875°

NOAA GFDL
GFDL-CM3 2.5°× 2.0°

GFDL-ESM2G 2.5°× 2.0°
GFDL-ESM2M 2.5°× 2.0°

GCMs



Methodology3

Climate
simulation GCMs (CMIP5) & Observation

Streamflow
simulation Hydrological model

Weights
assignment

Bias
correction Statistical downscaling

Impact
evaluation Multi-model mean Ensemble uncertainty

Equal weighting

Flow chart



Methodology3

Climate
simulation GCMs (CMIP5) & Observation

Streamflow
simulation Hydrological model

Weights
assignment

Bias
correction No bias-correction Statistical downscaling

Impact
evaluation Multi-model mean Ensemble uncertainty

Equal REA PI RAC UREA BMA CPI PDF

Flow chart
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Methodology3

Downscaling Method

Daily bias correction (DBC) method consists of LOCI method and DT method
 Local intensity scaling (LOCI) adjusts the wet-day frequency of simulated precipitation

 Daily translation (DT) corrects biases in the frequency distribution of simulated precipitation amounts and temperature

OBS

GCM-REF

OBS
GCM-REF

OBS-REF

OBS-FUT



Methodology3

Hydrological Modeling

GR4J-6 model consists of Oudin Evaporation Formulation , GR4J rainfall-

runoff model and CemaNeige snow module (6 parameters)
 The daily input data for the model includes Tmin, Tmax and precipitations.

Watershed Name Calibration
Period NSE Validation 

Period NSE

Xiangjiang Watershed 1975-1987 0.916 1988-2000 0.871
Manicouagan-5 

Watershed 1970-1979 0.926 1980-1989 0.881

Validation, Xiangjiang River Validation, Manicouagan 5 River

NS=0.871 NS=0.881



Methodology3

Weighting Approaches

PI 𝑃𝑃𝑃𝑃𝑖𝑖 = 𝑒𝑒
−
𝐵𝐵𝑖𝑖
2

𝜎𝜎𝐵𝐵
2 ×

1

1 + ∑𝑗𝑗≠𝑖𝑖𝑁𝑁 𝑒𝑒− �𝐷𝐷𝑖𝑖𝑖𝑖
2 𝜎𝜎𝐷𝐷

2

𝐵𝐵𝑖𝑖: bias to observation in climatological mean
𝜎𝜎𝐵𝐵: skill radius of model performance
𝐷𝐷𝑖𝑖𝑗𝑗: distance between 2 GCMs in climatological mean
𝜎𝜎𝐷𝐷: uniqueness radius of model interdependence

REA 𝑅𝑅𝑖𝑖 =
∈𝑣𝑣

abs 𝐵𝐵𝑣𝑣,𝑖𝑖

𝑚𝑚

×
∈𝑣𝑣

abs 𝐷𝐷𝑣𝑣,𝑖𝑖

𝑛𝑛 1/𝑚𝑚𝑚𝑚 ∈𝑣𝑣: natural variability
𝐵𝐵𝑣𝑣,𝑖𝑖: bias to observation
𝐷𝐷𝑣𝑣,𝑖𝑖: difference to multi-model mean in future

Equal weighting method and 7 unequal weighting methods
 Five performance-based methods

 Two methods based on multiple criteria

Performance
criterion

Independence
criterion

Performance
criterion

Convergence
criterion



Methodology3

RAC 𝑆𝑆 =
4 1 + 𝑅𝑅 4

𝜎𝜎 + 1/𝜎𝜎 2 1 + 𝑅𝑅0 4

𝑅𝑅: correlation between simulation and observation
𝑅𝑅0: maximum correlation (=1)
𝜎𝜎: ratio of standard deviation

Weighting Approaches

UREA 𝑅𝑅𝑖𝑖 =
∈𝑎𝑎

abs 𝐵𝐵𝑎𝑎,𝑖𝑖

𝑚𝑚1

×
∈𝑣𝑣

abs 𝐵𝐵𝑣𝑣,𝑖𝑖

𝑚𝑚2
𝐵𝐵𝑎𝑎,𝑖𝑖: bias in climatological mean
𝐵𝐵𝑣𝑣,𝑖𝑖: bias in variation

BMA 𝐸𝐸 𝑦𝑦|𝐷𝐷 = �
𝑖𝑖=1

𝑁𝑁

𝑝𝑝 𝑓𝑓𝑖𝑖|𝐷𝐷 � 𝐸𝐸 𝑝𝑝𝑖𝑖 𝑦𝑦|𝑓𝑓𝑖𝑖 ,𝐷𝐷
𝐷𝐷: observation series
𝑓𝑓𝑖𝑖: simulation series
𝑝𝑝: weight

CPI CPI𝑖𝑖 = exp −0.5
𝑠𝑠𝑖𝑖 − 𝑜𝑜𝑖𝑖 2

𝜎𝜎𝐴𝐴𝐴𝐴𝐴𝐴2

𝑠𝑠𝑖𝑖: simulated climatological mean
𝑜𝑜𝑖𝑖: observed climatological mean
𝜎𝜎𝐴𝐴𝐴𝐴𝐴𝐴2 : inter-annual variance of the simulated series

PDF PDF𝑖𝑖 = �
1

𝐾𝐾

minimum 𝑍𝑍𝑠𝑠,𝑍𝑍𝑜𝑜
𝑍𝑍𝑠𝑠: simulated frequency in a given bin
𝑍𝑍𝑜𝑜: observed frequency in a given bin
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Results4

Weights

 The rank of the ability to differentiate reliability of GCMs:

REA > UREA ≈ CPI > RAC> BMA ≈ PI > PDF

 When using bias-corrected climate outputs, all weighting methods tend to 

assign more similar weights to GCMs.
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Results4

Multi-model mean hydrograph (Xiangjiang, Raw)
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(a) Xiangjiang, RT
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Reference, RQ

Reference, RT Reference, RP

 Equal weighting underestimates streamflow before 

peak and overestimates streamflow after peak.

 Temperature-based weights induce to biased mean 

hydrograph, compared to streamflow-based weights.



Reference, RQ

Reference, RT Reference, RP

Results4

Multi-model mean hydrograph (Manicouagan-5, Raw)

 Temperature- and precipitation-based weights do 

not induce to significantly biased hydrograph.

 Streamflow-based weights have slightly better 

performances.



Results4

Multi-model mean hydrograph (Bias-corrected streamflow)

 Although biases in the reference period are greatly reduced, there are still significant uncertainty in future period.

 Since similar weights are assigned to ensemble members, there are few differences in the multi-model mean 

hydrograph.

Xiangjiang, Reference, DQ Xiangjiang, Future, DQ

Manicougan-5, Reference, DQ Manicougan-5, Future, DQ



Results4

Uncertainty of changes (Xiangjiang)
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(h) Peak streamflow, Bias-corrected

 Monte-Carlo sampling
Uncertainty of equal weighting is directly 
represented by the 29 values from GCMs;

Uncertainty of unequal weighting is 
represented by the 1000 samples taken 
from the Monte-Carlo experiment

 For streamflows simulated by raw GCMs, unequal 

weights present reduced or similar uncertainty, 

compared to that of equal weighting;

 For streamflows simulated by bias-corrected 

GCMs, the equal weighting and unequal weighting 

present similar performances in uncertainty 

evaluation.



Results4

Ensemble Uncertainty (Manicouagan-5)
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Conclusions5

 For the streamflows simulated using raw GCM outputs without bias correction, 
the weights calculated based on streamflows can produce better hydrographs, 
compared with the weights calculated based on climate variables;

 When using bias-corrected GCM outputs to simulate streamflow, similar multi-
model means and uncertainty of hydrological impacts for all unequal 
weighting methods are observed;

 It is likely that using bias correction and equal weighting is viable and sufficient 
for hydrological impact studies 
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