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Common way to investigate the climate change impacts:

(1) Downscale outputs of global climate model (GCM) into watershed scale; and

(2) Input downscaled data into hydrological model to project streamflow.
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Two problems in model weighting for impact studies:

» The impact variable is related to multiple climate variables

A trade-off among different climate variables needs to be decided in order to obtain a

single set of weights for impact studies.

» There is a non-linear relationship between the climate and impact variables

The weights calculated based on climate variables may be ineffective in the
hydrological impacts.

Objectives:
» Assign weights to GCM simulations according to their ability to represent hydrological
observations;

» Investigate the impacts of unequal weighting methods on the quantification of hydrological
responses to climate change; and

» Assess the influences of the bias correction to GCMs on the performances of model weighting.




Sudy Area

————Misnadiana Mlatacchad (China)———Manicouagan-5 Watershed (Canada)

N Pacific
Xiangjiang Ocean
watershed

Area: 24610 km?2

ANnual KUNOTT: ££1Z M>/S Annual Runoff: 1020 m3/s
Average Temperature: 17 °C Average Temperature: -1 °C
Flow regime is hardly affected by the Flow regime is significantly affected by

snow accumulation and snowmelt. the snow accumulation and snowmelt.



P GCMs

Data

Model name

Resolution

Resolution

Modeling center

CSIRO-BOM

BCC

GCESS
CCCMA

NCAR
CMCC
CNRM-CERFACS
CSIRO-QCCCE

LASG-GESS

NOAA GFDL

ACCESS1.0
ACCESS1.3
BCC-CSM1.1
BCC-CSM1.1(m)
BNU-ESM
CanESM2
CCSM4
CESM1(CAMDb)
CMCC-CMS
CMCC-CM
CMCC-CESM
CNRM-CM5
CSIRO-Mk3.6.0
FGOALS-g2
GFDL-CM3
GFDL-ESM2G
GFDL-ESM2M

Lon. X Lat.
1.875° X 1.25°

1.875° X 1.25°
2.8° X 2.8°
1.125° X 1.125°
2.8° X 2.8°
2.8° X 2.8°
1.25° X 0.94°
1.25° X 0.94°
1.875° X 1.875°
0.75° X 0.75°
3.75° X 3.7°
14° X 14°
1.8° X 1.8°
1.875° X 1.25°
25° X 20°
25° X 20°
25° X 20°

Modeling center

Model name Lon X Lat.

HadGEM2-CC 1.875° X 1.25°
MOHC
HadGEM2-ES 1.875° X 1.25°
INM INM-CM4 2.0° X 15°
IPSL-CM5A-LR 3.75° X 1.9°
IPSL IPSL-CM5A-MR 2.5° X 1.25°
IPSL-CM5B-LR 3.75° X 1.9°
MIROC-ESM-CHEM  2.8° X 2.8°
MIROC
MIROC-ESM 2.8° X 2.8°
MIROC MIROC5 14° X 14°
i MPI-ESM-LR 2.8° X 2.8°
MPI-ESM-MR 14° X 14°
P MRI-ESM1 1.125° X 1.125°
MRI-CGCM3 11° X 1.1°
NCC NorESM1-M 1.875° X 1.875°
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P Downscaling Method

Daily bias correction (DBC) method consists of LOCI method and DT method

» Local intensity scaling (LOCI) adjusts the wet-day frequency of simulated precipitation
» Daily translation (DT) corrects biases in the frequency distribution of simulated precipitation amounts and temperature
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} Hydrological Modeling

Watershed Name
Period Period
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1970-1979 1980-1989 0.881
Validation, Xiangjiang River Validation, Manicouagan 5 River
5000 | 3000 -
so0 - NS=0.871 —— Observed NS=0.881 —— Observed
—— Simulated —— Simulated
000 @ B0
E ol E
: g
S 3000 a
i 2500 % 1500
E 20 :
§150. 5 'E.l‘ﬂll r
5 £
Z 1000 Z s00 |
500
0




Methoddl ogy

’ Weighting Approaches

2
_B_i 1 B;: bias to observation in climatological mean
Pl = 0-12; X op: skill radius of model performance
i —¢€ —D: -/0‘ D;;: distance between 2 GCMs in climatological mean
1 + Z]-‘#l ij/ =D op: uniqueness radius of model interdependence
Performance Independence
criterion criterion
ny1l/mn Ev natural variability
— v i bias to observation
abS(B ) abS(D ) D, ;: difference to multi-model mean in future
D, [ v, [
Performance Convergence

criterion criterion
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} Weighting Approaches

o 4(1 + R)*
"~ (60+1/0)2(1 + Ry)*

RAC

R: correlation between simulation and observation
Ry: maximum correlation (=1)
o: ratio of standard deviation

"ol el
' abs(Ba,l-) abs(Bv,l-)

B, ;: bias in climatological mean
By, ;: bias in variation

N
ElyID] = ) p(fID) - Elpi(yIfi, D]
i=1

D: observation series
fi: simulation series
p: weight

2
CPI; = exp [—0.5( — )
OANN

s;: simulated climatological mean
0;: observed climatological mean
o2yn: inter-annual variance of the simulated series

K
PDF; = z minimum(Z, Z,)
1

Z,: simulated frequency in a given bin
Z,: observed frequency in a given bin
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P Weights

Weighting method and variable

Weighting method and variable
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} Multi-model mean hydrograph (xiangjiang, Raw)
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Equal weighting underestimates streamflow before

peak and overestimates streamflow after peak.

Temperature-based weights induce to biased mean

hydrograph, compared to streamflow-based weights.

Reference, RP
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Multi-model mean hydrograph (Manicouagan-5, Raw)
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Temperature- and precipitation-based weights do

not induce to significantly biased hydrograph.

Streamflow-based weights have slightly better

performances.
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Multi-model mean hydrograph (Bias-corrected streamflow)
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Although biases in the reference period are greatly reduced, there are still significant uncertainty in future period.

Since similar weights are assigned to ensemble members, there are few differences in the multi-model mean

hydrograph.
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(a) Annual streamflow, Raw (e) Annual streamflow, Bias-corrected

) Uncertainty of changes (xiangjiang)
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’ Ensemble Uncertainty (Manicouagan-5)

(e) Annual streamflow, Bias-corrected

(a) Annual streamflow, Raw
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