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Why do we need statistical post-processing
for nowcasting of 1km-scale weather?

Can’t we simply run the model more often?
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Why do we need statistical post-processing
for nowcasting of 1km-scale weather?

Can’t we simply run the model more often?

we would need to run It very-very often and
with a massive amount of new 1lkm-scale
observations

er forecast products improved by citizen observations
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Three different ways to
include new “local”
observations in a
cloud-resolving Local
Atmospheric Model

6 Hohenegger, C. and C. Schér, 2007: Predictability and Error Growth Dynamics in Cloud-Resolving Models. J. Atmos.

SPREAD GAUSS1-SHIFTé RAND-SHIFT6

0.25 0.75 1.5

FiG. 2. Comparison of different perturbation methodologies. i.e.. (left) shifting initialization. (center) Gaussian perturbation, and
(right) random numbers valid after 0, 11, and 22 h of integration at 1-km height (K). The panels show temperature spread § (for the
shifting initialization technique) and temperature difference D (for the other techniques). The dashed line indicates the footprint of
the initial Gaussian perturbation associated with GAUSSI in the lowermost model layer. The maps cover an area of approximately
882 km x 662 km (401 x 301 grid points).

Sci., 64, 4467-4478, https://doi.org/10.1175/2007JAS2143.1
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Three different ways to
include new “local”
observations in a
cloud-resolving Local
Atmospheric Model
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FiG. 2. Comparison of different perturbation methodologies. i.e.. (left) shifting initialization. (center) Gaussian perturbation, and
(right) random numbers valid after 0, 11, and 22 h of integration at 1-km height (K). The panels show temperature spread § (for the
shifting initialization technique) and temperature difference D (for the other techniques). The dashed line indicates the footprint of
the initial Gaussian perturbation associated with GAUSSI in the lowermost model layer. The maps cover an area of approximately

High level of agreement
between the three
methodologies at forecast lead
time +22 hours

882 km x 662 km (401 x 301 grid points). Norwegiun
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(right) random numbers valid after 0, 11, and 22 h of integration at 1-km height (K). The panels show temperature spread § (for the
shifting initialization technique) and temperature difference D (for the other techniques). The dashed line indicates the footprint of
the initial Gaussian perturbation associated with GAUSSI in the lowermost model layer. The maps cover an area of approximately
882 km x 662 km (401 x 301 grid points).

Lost memory of the local
information

The model evolution is forced
by something else (boundary
conditions ...)

High level of agreement
between the three
methodologies at forecast lead
time +22 hours
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statistical post-processing for nowcasting
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+PHARMACY.

remedy for short term memory loss in NWP
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Why use Cltlzen observatlo_ns’?
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to galn confldence In our predlctlons
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Titan quality control
Choose TITAN file
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.even better if
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Quality control is essential to get value!
Network should be treated as a whole, not as individual stations
Only 20% are removed in our conservative QC
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TITAN

automatic data quality control softW

https://github.com/metno/TITAN

Pull requests Issues Marketplace Explore

2 metno / TITAN @watch~ | 45

<> Code 1) Issues 1" Pull requests 0 FPcurity I1 Insights r Settings

Automatic data quality control software

Manage topics

D 143 commits ¥ 3 branches > 6 releases A8 2 contributors & GPL-30

Branch: master~ | New pull request Create new file  Upload files  Find File

Cristian Lussana bug fixed in writing prid on the output file Latest commit efbzbio 11 days ago

. sct Don't use symiinks for sct_smart_boxes 5 months ago
i test added fg and fge in output file 3 months ago
[ .gitignore set —-xo.topdown command line options as flags last year
[E) LICENSE Initial commit 2 years ago

README.md devel 4 months ago

[& titan.R bug fixed in writing prid on the output file 11 days ago

EE README.md £

TITAN - auTomatlc daTa quAlity coNtrol




rl _of Ice & ._ i



MET Nordic Forecast 17
. Used in post-processing of temperature & precip from NWP lqR

1 System is run every hour O
1 Seamless transition from +0h to +1h A~

[ 1. QC H 2. Merging Gridded truth

+0h

pservations
WMO, Radar, Netatmo,

Current and past 24h

[ 3 Bias—c:)rrection Gridded forecast
. +1h to +60h

2.5 km ensemble




3. Bias-correction 18

1 Gridpoint by gridpoint correction YR
1 Seamless transition from gridded truth to gridded forecast O
. Diurnally varying bias based on last 24 hours A
12 ! , , —— , , ,

D e Rl

Temperature (°C)

1 Raw analysis bias - = Real-time contribution

3 ] Total adjustment Diurnal contribution
+2 Lo HH T P P ....... T f ......... T S 4
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Frequency of forecast busts (%)

With correction

Without Netatmo correction
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MET Nordic Analysis and Forecasts

L3 wer post-processed products
L:J Latest/

e Hourly updates 23 archive

Production strategy:

I ifi i (= J)perational/
e Reruns when significant improvements on — o

L...J Rerun version 1/

o observational data

o data quality control methods

o statistical post-processing methods
e OpenData access on thredds.met.no

o WIKI https://github.com/metno/NWPdocs/wiki/Post-processed-products

O Metgorologisk
A~ INstitutt
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