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Introduction – Precipitation seen by an 
hydrologist : spatial structure matters !
• A basin has a given area (space) and 

characteristic response (time). 
• It is mainly sensitive to precipitation

averaged over this scale.

• Along the hydrographic network we see
small and big basins, selecting quite a 
range of different scales

• Basins are natural places for aggregation
of water fluxes, flow suming up at 
branches, so that high flow and water 
resources do combine naturally in a non 
trivial. 

• Man-made actions (targeting water use 
or water hasard) seems to be quite
local, but develop on this background. 



Introduction – Precipitation seen by an 
hydrologist : spatial structure matters !
• Water fluxes in hydrology are not a primary thing. A perspective is to see water 

fluxes as the transformation of atmospheric conditions by land processes. 
• Land processes are largely non-linear in general. 

• Most basic example : 

Say a soil is able to absorb 10 mm precipitation. 
What if rain is 10 mm on average ?
What if rain is spatially 10+10 mm ? 12 +8  mm? 14+6  mm ?

• In hydrology working with averages may not suffice.
• To adress use precipitation we need to consider also the spatial variability. 



Introduction – Precipitation seen by an 
hydrologist : spatial structure matters !
• To design and test management strategies, a present-day must-have 

playground is to set up a numeric model of the basin.
• This numeric model needs inputs from the atmosphere (precipitation, 

temperature). 
• These inputs can be from the past :

time-series, specific events, reanalysis… 
• They can target the possible beyond the observed :

• resampled/shuffled historical. 
• stochastic weather generators (SWGs) having a explicit parametric structure

• these are useful to run long input sequences, offering a quite exhaustive view of how the 
hydrologic system transforms common climate variability.

• SWGs must respect the assessable structure of inputs intervariates, space
and time.



Introduction – Precipitation seen by an 
hydrologist : spatial structure matters !
• A precipitation model targeting the needs of hydrology must respect the 

distribution of rainfall agregates over the said scales.
• One first step is to have expected value and variance correct for a range of 

spatio-temporal scales. 
• For this we need to have the spatio-temporal covariance of precipitation

correct, because covariance governs the variability of sums

remember Var(X+Y) = VarX+ VarY+2.Cov(X,Y)

⇒ This talk is about two algorithms useful in designing SWGs
trying to take car of the above.



Algorithm #1
Variations around the multigaussian distribution



Using a minimalistic case : 2 variates sampled, yearly values at one place.
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Building a statistical sample
out of observed data

data reshaped as 2-year statistical individuals
P_1 T_1 P T

1979-1980 1096 11.4 756 8.0
1980-1981 756 8.0 650 6.7
1981-1982 650 6.7 741 3.0
1982-1983 741 3.0 793 8.7
1984-1985 793 8.7 958 8.2
1985-1986 958 8.2 672 8.6
1986-1987 672 8.6 861 7.4

data as observed
year P T
1979 1096 11.4
1980 756 8.0
1981 650 6.7
1982 741 3.0
1983 793 8.7
1984 958 8.2
1985 672 8.6
1986 861 7.4



A note on inference

• From this we observe a 
covariance matrix C

• C is positive definite. 
It admits a Cholesky
decomposition :  it exists one 
only lower triangular matrix L, so
that C = L.LT

The covariance matrix

P_1 T_1 P T
P_1 4 2 1 1
T_1 2 3 1 1

P 1 1 4 2
T 1 1 2 3

same year successive years

P was divided by 100 (scaling)

L, the Cholesky matrix to C

2.00 0 0 0
1.00 1.41 0 0
0.50 0.35 1.90 0
0.50 0.35 0.85 1.38



Bridge to multivariate autoregressive process
perspective
• Standard use of Cholesky matrix L is to multiply it by a vector of 

independent N(0,1) variates. The resulting vector has covariance C.
• So Cholesky is instrumental in simulating a given dependence.

• Let us consider a new matrix L1 « first year binding » having the first 
half lines as in L and the last half lines as in identity matrix In. 

L1, first-year binding matrix

2.00 0 0 0  as in L
1.00 1.41 0 0

0 0 1 0 as in Id
0 0 0 1



A, the matrix to extend one year into two

1 0 0 0
0 1 0 0

0.500 0.354 1.904 0
0.500 0.354 0.853 1.377

We want to simulate a multivariate time serie

• Let  A=(L1)-1 L
• Given

• one-year data 
• Independent N(0,1) values for a second year
Matrix A unbinds the one-year data back into independent
N(0,1), then builds a two years samples following C. 

• So A is instrumental in extended one year into a 
next one. 

• Looking at A, we find that
• Down-left in A is a one-year autoregression matrix AR 
• Down right in A is a Cholesky noise matrix N
• N.NT is the part of covariance within the 2nd year not 

accounted by the autoregression (Schur complement). 

AR N

N.NT

Total variance within one year

0.500 0.354
0.500 0.354

1.904 0
0.853 1.377

3.625 1.625
1.625 2.625

4 2
2 3



Link with geostatistics
• In the covariance matrix C is all to make a simulation of the 2nd year conditional to the 1st.
• Now using geostatistical words

• Having half of n values, you make a simple kriging of one variate (n/2)+1
• Adding a random deviation based on the kriging variance makes a conditional simulation. 
• Now you go to the next variate (sequential gaussian simulation) until the 2nd year is complete.

• Using statistical words : this is chain rule for multivariate simulation
• P(X)
• P(X,Y) = P(Y|X)*P(X)
• P(X,Y,Z) = P(Z|(X,Y)) *P(X,Y) = P(Z|(X,Y)) *P(Y|X) * P(x)

• Sequential gaussian simulation is essentially the same as multivariate AR based on the same
underlying C. 

• Then you can shift one year and go for a 3rd year : the AR perspective makes long simulations 
possible were usually geostatistics do not go.



Link with copula perspective

• Copulas simulate directly vectors with specific link between their marginal cdf.
• Matrix C here is directly related to a n dimensional Gaussian copula. 

• We notice that the built-in capacity of copula to simulate some variates knowing the 
others ones - not the first use of copulas.

• Copula research insists that
• gaussian copulas is just one of many possibilities. 
• resigning the gaussian copula (were covariance serves as the measure of dependence) is a price to 

pay ; if we accept it we can independently study marginals distribution and the link between
variates. 

• The Gaussian copula is the most easy way for a geostatistician to enter the modern world 
of copulas and understand he/she can survive and possibly contribute there. 



Lessons from algorithm #1

• Having the covariance matrix at their core, 
multivariate AR geostatistic simulation gaussian copula

perfectly coincide. 
• Combining the various perspectives helps to understand any of these

and apply them with flexibility and opportunity.
• Understanding the basic mathematics that makes versatility possible. 

Using ready packages, certainly powerful and time saving, may
restrict the user to predefined « use cases ».



Algorithm #2 
Non-deterministic desagregation of precipitation



Preliminary : how to desagregate bloc values 
in a non gaussian context ? 

We start from a Gaussian free simulation (1) we translate into real-world engineering values (2)

(1)

(2)



We want to respect bloc values in user world.



We know (using block kriging) how to enforce
Gaussian block averages but they are not in a 1-1 
relation to real world averages.



Arbitrary block values in Gaussian world will
translate too high or too low in the user world.



Fortunately there is a positive relation between
gaussian world averages and real world averages



So we can use them as pilot values to guide the 
simulation to the target (De Marsily, 1986)



..this mean optimization…

Pilot values here

Assessment here



Finally the job is done (and we use blue ink)



Still, the build was initiated from a free 
simulation that reflects in the results ?



Then other solutions are possible…



… infinite many in fact, sharing the parental 
variability as filtered by the constraints



Now we adapt to precipitation disagregation

• Large scale averages (satellite, GCM, scenarii) 
known for precipitation (mm) and wetness (0-1)

• We want to simulate a suitable small scale
• Variability is assumed known at small scale (say, from local raingauges)

• We use the basic algorithm twice
• Once to get a wet-dry pattern respecting given areal wetness
• Once to get an intensity pattern respecting given areal precipitation.

28

Area =>
Time step

A B C D

Wetness [0-1] 1 0.4 0.6 0.7 0.8
2 0.3 0.8 0.6 0.9
…

precipitation (mm) 1 1 1.2 2.3 3.2
2 1.5 1.3 2.1 2.8
…

B B B B B B B
A A A A A A A A A B B B B B B B
A A A A A A A A A B B B B B B
A A A A A A A A B B B B B B B C

A A A A A A A A C C C C C C C
A A A A D D D D C C C C C C C

D D D D D D D D C C C C C
D D D D D D D D D D D C

D D D D D D D D D D D
D D D D D D



A - Simulated 3d gaussian field #1

29

Time 1

Time 2



B – optimised large scale « pilot values » here
interpolated as a grid of local deviation to add…

30

Time 1

Time 2



C – so that the rainy area mask we get (tresholding
the sum) respects the expected wetness

31

Time 1

Time 2



D – Simulated 3d Gaussian field #2

32

Time 1

Time 2



E – and interpolated bloc deviations

33

Time 1

Time 2



F – …so that rainfall quantities (as sum over 
rainy areas) match the given values

34

Time 1

Time 2



Lessons from algorithm#2

• Disagregation needs to supplement large scale information with a 
model of small-scale variability.

• The disagregation is non-deterministic, in practice uncertainty is
expressed by an ensemble of equiprobable solutions.

• Each member is like a possible reality. We can process it across a 
deterministic model to study consequences and their uncertainties. 

• Such a model can be as physically based and as non-linear as the real 
world is.



Wrap up
Start Nice hydrologic models are not enough to understand / optimize / secure the behaviour of 

the water flow in a catchment, if uncontrolled input interacts with non-linear features at 
ground.

Perspective Full detail of real world features is intrinsicaly beyond measurement. We shall always need
to cope with unsolved variability. 

Suggestion To mimick any unsolved variability shall give at least a probabilistic control on it

Assessment Techniques are available, of course approximate, yet give pictures of the real world  
retracing what we know and what we do not know. 

Uncertainty is replaced by ensembles that are convenient to process. 

Developpement, calculation and storage burden are not negligible. 
It may be acceptable in a team work, if colleagues accept preprocessing of input data. 

Hydrologists Should contribute because of their understanding of the part of variability significant to them.

Can participate to build an interface between climatology/meteorology and hydrology/water  
resource/water hasard management 

It would be unfair and inefficient to let meteorologists (or mathematicians) make all the job alone
and thereafter complain the result is inadequate to our needs. 





Note on the large size of matrices
Large matrix may arise in alg #1
• Let some variables of interest

(say 2, Precipitation, Temperature)
• Monthly values taken as basic decriptor to include seasonnality

(say 12 values per year, 24 for 2 years so as to include autoregression) 
• Over several areas 

(say 10 sub-areas to a major basin)
• Then n=2 x 24 x 10 = 480

• As C is assessed using a limited observation record, C~ will have rank << n. 
• To get rid of eigenvalues zero, we need to load the diagonal. 

• Adding a small constant to the diagonal (Tikhonof regularization) 
• Equivalent to : using the same observation again and again adding independent noise to the data.

• This makes the covariance matrix C definite positive, so the Choleski decomposition possible
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