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1. Motivation and Objectives

» Environmental and water resources related
decisions rely upon wide range of
modelling results.

Sources of uncertainty

E P,T,H,RW

» Model predictions are generally imperfect

» Need for uncertainty analysis and
communicating model simulation results in
terms of uncertainty bounds rather than

with only crisp values.
Observational
data

Parameter
Model Structure




1. Motivation and Objectives

Main goal:

To emulate the time consuming Monte Carlo (MC) simulation for applications in

parameter identification -

Distance function

Specific objectives: R
» Assess the possibility of using pLoA as a Recorded @
likelihood measure predictors
K-Nearest
NeigTbors
» Evaluate the viability of using random forest Kernel Function
(RF) and k-nearest neighbors (KNN) as ecorded /7&\__
emulators of the MC simulation dependent
variables \/
Estimated
variable

after Araghinejad (2014)



2. Methods and materials

The Statkraft Hydrologic Forcasting Toolbox (Shyft)
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Structural representation in
distributed setting
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2. Methods and materials

The Nea-catchment and available data

» Discretized into 812

grid cells
» Climatic data:

* Precipitation

¢  Temperature

*  Humidity

* Solar radiation

*  Wind speed

» Physiograpic data:

* Fractional area of
forest cover, lakes,
reservoirs, and

Dominant land cover types
I forest

sparsely vegetated

moors and bogs
" |bare rock
Il water bodies
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> Streamﬂow River network

Physiography and location map of the Nea-catchment.



2. Methods and materials

Parameter identification using the time-relaxed limits of acceptability approach
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2. Methods and materials

Machine learning modelling

. . R (725 }e2 5= 0.52 {mo ] rrrverrveee e :
» three machine learning models (MLMs)

. E
considered to emulate the Monte-Carlo
(MC) simulation S oy

* Random forest (RF) m $ @

* K-nearest neighbors (KNN)

 Artificial neural network (NNET) (. fsﬂ'iwj [ ojgz@ EF ﬂggfm o) . ..=1m
» two sets of MLMs were trained

B2

* model parameter values (as covariates), and 1

*  pLoA and score (as target variables)

» relevant hyper-parameters of the MLMs  °
were optimized

01 pLoA




2. Methods and materials

Coupling of the machine learning emulators with the LoA approach

MC simulation ML Emulators Parameter samples used in building and

RF KNN NNET o
application of the MLM-based emulators.
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3. Results

Evaluation of the MLMs capability in reproducing the response surfaces

Evaluation result of the predicted target variables, i.e. pLoA and Score through comparison against values
estimated using the MC simulation for the validation samples (the eval. metrics are averaged over four years)

Eval. Score
Metrics KNN NNET
RMSE 5.223 7.744 6.187
R2
0.874 0.724 0.814
MAE 2.942 4.969 3.771




3. Results

Evaluation of behavioural parameter sets using observed streamflow

Calibration Validation

T 1
I
09} B NN |
I NNET
il U.B B
= |
®
= 07
06
0.5 )
NSE LnNSE CR NSE LnNSE CR
Efficiency metrics Efficiency metrics

Average value of the evaluation metrics for the calibration and validation periods
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3. Results

Evaluation of behavioural parameter sets using observed streamflow

Streamflow (m’/ s)

Streamflows (m°/'s)

100

n
=)

200 1

150

100

n
=
L

0

(a) | 2011 (b) | 2012

—

n

=
1

n
=]

[ 1]
Streamflow (m”/ s)

0

Jan Apr Jul Oct 2011
Simulation date

Jan 2012

Apr2012

Simulation date

© o013 (@ | 2014

]
[=]
=]

1007

Streamflows (m”/'s)

0

Jul 2012

L)

Oct 2012 Jan 2013 Apr 2012 Jul 2013 Oct2013
Simulation date

—#=KMM —* NNET = 0bs. Q—* RF

Jan 2014

Apr 2014
Simulation date

Jul 2014

Simulated and observed streamflow values for the calibration period, i.e. year
2011 (a) and validation periods, i.e. years 2012 (b), 2013 (¢), and 2014 (d).
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3. Results

Evaluation of behavioural parameter sets using observed streamflow
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Simulated against observed streamflow values for the calibration period, i.e.
year 2011 (a) and validation periods, i.e. years 2012 (b), 2013 (c), and 2014 (d).
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3. Results

Evaluation of behavioural parameter sets using observed streamflow
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3. Results

Variable importance and interaction
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Relative importance of the hydrological model parameters based on the three machine learning
models, i.e. RF, KNN and NNET trained for pLoA (upper row) and score (lower row)
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3. Results

Variable importance and interaction
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4. Concluding remarks

The MLMs were able to adequately reproduce the response surfaces for the
test and validation samples.

The coupled MLMs and time-relaxed limits of acceptability approach were
able to effectively identify behavioural parameter sets.
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