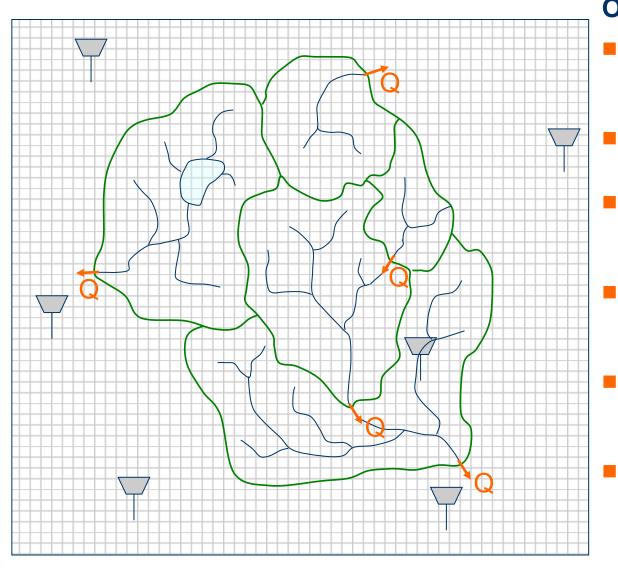
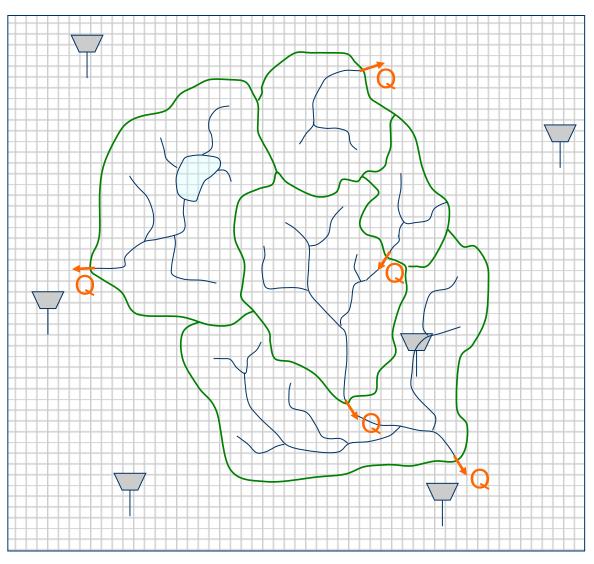


Sjur Kolberg, SINTEF Energi


Distributed hydrological modeling and GIS

- Exploiting the full potential in distributed hydrological modelling more or less requires a supporting GIS
- The core simulation, however, will rarely be performed within the GIS program itself, due to performance issues
- Possible routes for integration:
 - Running the model from the GIS program
 - Calling GIS program functions from the running model
 - Memory or disk file data exchange?
- Preprosessing of model data in the GIS
- Visualisation, analysis and storage of results in the GIS
- Most GIS do not handle the temporal dimension well.

Motivation:

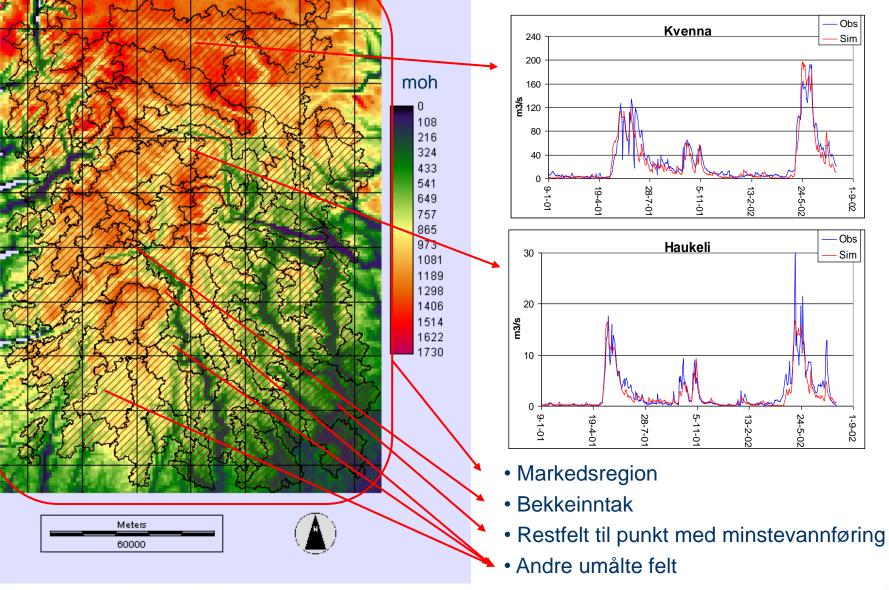

Operational:

- One distributed model over a region replaces many HBV models
- Common setup of input data and calibration
- Simulates ungauged basins, hydropower market regiones etc.
 - Objective estimation of areal precipitation and other input variables.
 - Easy to integrate weather radar, satellite imagery, gridded met. forecasts etc.
 - Map visualisation provides a good overview of the hydrological state in the region.

Motivation:

Hydrological:

- Better physical description makes the model more robust towards unusual conditions
- Areal distribution of input data important for large basins near the water divide.
- Spatial distribution of states enables rapid response from parts of the catchment
- Measured information in neighbour catchments can support both calibration and updating


resultat

bakgrunn

hydrologisk modell

regional kalibrering

Vilkårlige områder

Distributed modelling software

- SINTEF Energy Research has been developing a modular software framework for Statkraft since 2002.
- This framework (currently named DEMlab) is in the process of being released as an Open Source project.
- R&D cooperation between Statkraft and other hydropower institutions is already established
- The Open Source approach facilitates easy integration of results achieved in i.e. EBL projects.
- Open Source GIS data library GDAL ensures compatibility with most GIS programs, including both ArcGIS and Open Source GIS tools (GRASS, SAGA, Quantum GIS).

🕥 SINTEF

		The second s	
W HydraGRF_SR.top - RegModel			
<u>Eile V</u> iew Model Region Parameters Initials Input Outputs !	Help		
🗅 🗃 🖬 🕺 🖶 🚭 😵 🛛 HBVResponse	✓ HBVResponse		
Run model		Region: SentralReg	
S Model is not initialized	et parameters	Network OBSdischarge File set: OBSdischarge Network geometry = region's default Number of nodes = 124 Missing-code = -99.000000	:
_	Set initials Set PM stats	infcap Inity	New scalar
	Monte Carlo	k0 k1 k2	New raster
Run / Report Start MC Pause	Stop	laicap lakep landuse Lastwinterday Lint LowLAI LP	Delete
Current time 31.12.2006		Lstor Maxalbedo	Input Database
Mode	l dialog	MaxIntStats MaxLWC Minalbedo	Output Database
		OBSdischarge	

DEMLab

- Re-development of the PINE system (Rinde, 1998)
- Emphasis on distributed models and GIS
- Strongly modular, all routines are separate DLLs
- All visualisation in external programs

Region dialog

Set Files

Read data

Write data

NUM.

regional kalibrering

perc RadGrad ReetSnowDepth

rstats

rstats_elev rstats_reldev rstats_stdev Rstore

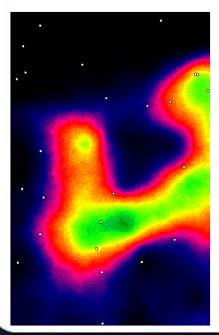
Rtreshold

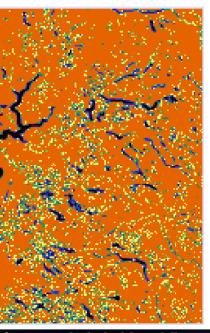
SDCShape SimDischarge

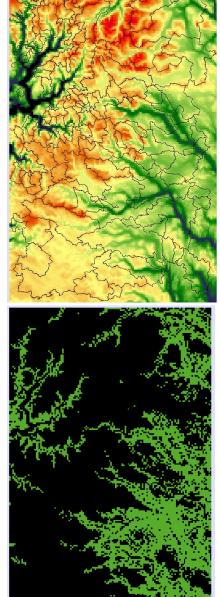
resultat

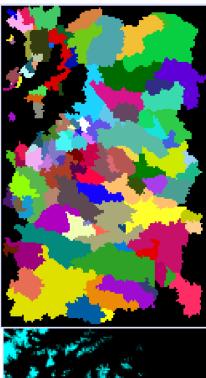
SCA SDC_CV SDC_M

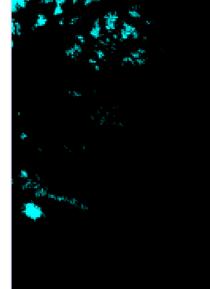
Y


GIS and variable types in distributed models


- Model variables have GIS types: Raster, point network, scalars
 - Different roles in the model:
 - Static background maps (usually rasters)
 - Parameters (Adjustable information; usually scalars)
 - Input variables (time series of point or raster data)
 - States (Usually rasters, need initialisation)
 - Responses (Rasters or discrete point time series).


SINTEF


GIS based model setup:


- Elevation map (DEM)
- Subcatchment division
- Measurement gauge map
- Lake map
- Forest map
- Glacier percentage map

resultat

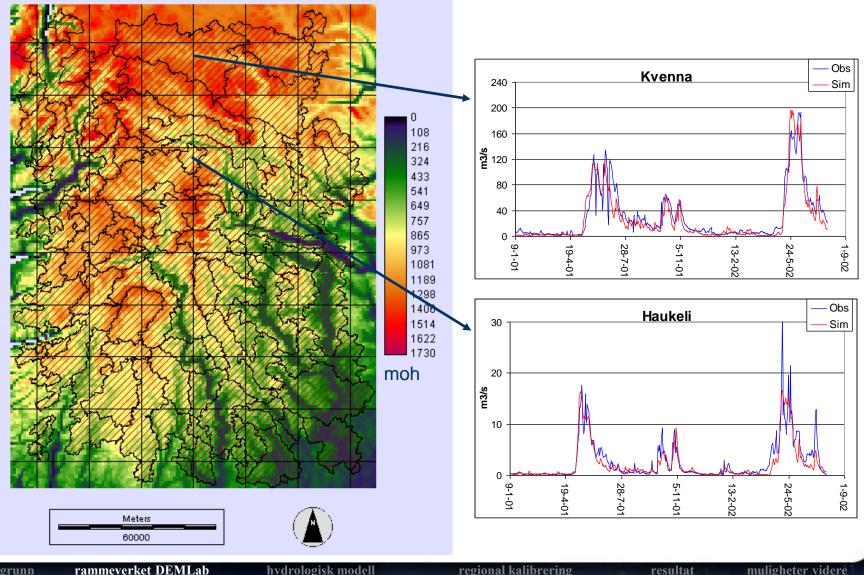
bakgrunn

rammeverket DEMLab

hydrologisk modell

regional kalibrering

muligheter videre


Automatic calibration

stribution	Value	Variance	Min	Мах		
niform 🗾 💌	-0.9	-0.5	-0.9	-0.5	Set	
mpGrad (Current	value: -0.9)					⊢ MC method
Parameter	Routine	Minimum	Maximum	Distribution	<u>^</u>	
eldcap	HydraSoil	0	3.40282E+0	Uniform(120,300)		C Nelder-Mead
lfcap	HydraSoil	0	3.40282E+0	100		Global, simplex procedure.
tmp	HydraEP	-3.40282E+	3.40282E+0	Uniform(0.05,0.2)		
onsthum	Consthum	-3.40282E+	3.40282E+0	80		SCE-UA
ETA	HydraSoil	-3.40282E+	3.40282E+0	Uniform(1,2)		Global shuffled complex
empGrad	IDWtemp	-3.40282E+	3.40282E+0	Uniform(-0.9,-0.5)		evolution. Slow and robust
/sum	HydraEP	0	3.40282E+0	Uniform(50,200)		for difficult cases.
onstwind	Constwind	-3.40282E+	3.40282E+0	1		
eetSnowDepth	GamSnow	0	3.40282E+0	10		C Restricted Newton
X	GamSnow	-3.40282E+	3.40282E+0	Uniform(-1,3)		Gradient search with
treshold	HBVResponse	-3.40282E+	3.40282E+0	20		parameter bounds.
Р	HydraSoil	-3.40282E+	3.40282E+0	0.9		parameter bounds.
ladGrad	Idwrad	-3.40282E+	3.40282E+0	0		
/indconst	GamSnow	-3.40282E+	3.40282E+0	Uniform(0,2)		C Marquardt-Levenberg
astDecayRate	GamSnow	0	3.40282E+0	Uniform(2.5,5)		Multi-surface gradient
laxIntDist	Idwrad;IDWtemp	0	3.40282E+0	300000		search using the Jacobian
snw	HydraEP	-3.40282E+	3.40282E+0	0.1		matrix (PEST algorithm)
pcorr	HydraEP	-3.40282E+	3.40282E+0	Uniform(0.5,2)		
faxLWC	GamSnow	0	1	0.1		O Pure MC (GLUE)
taxalbedo	GamSnow	0	1	Uniform(0.85,0.95)		Random drawing from
wnd	HydraEP	-3.40282E+	3.40282E+0	Uniform(0.3,0.7)		specified distributions
erc	HBVResponse	-3.40282E+	3.40282E+0	Uniform(0.1,0.3)		
0	HBVResponse	-3.40282E+	3.40282E+0	Uniform(0.02,0.06)		
davIntState	Idwrad IDW/temp	0	3 /0282F±0	25	~	
	Set Seed	# MC runs:	🔽 Store d	output		
0-1-0-	0	9999		·	Com	
Set file	0	3333	Set PM v	veights	Can	cel OK

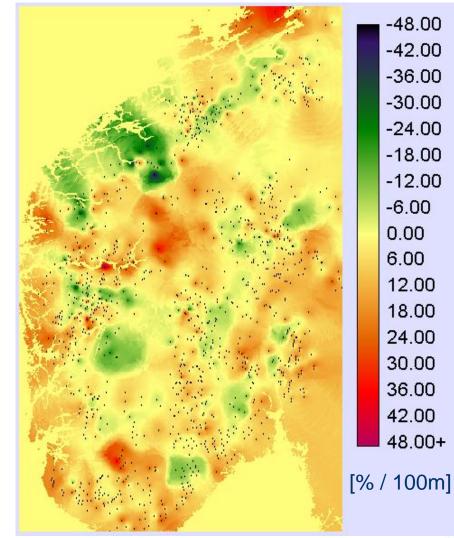
bakgrunn

Regional simulation and calibration

bakgrunn

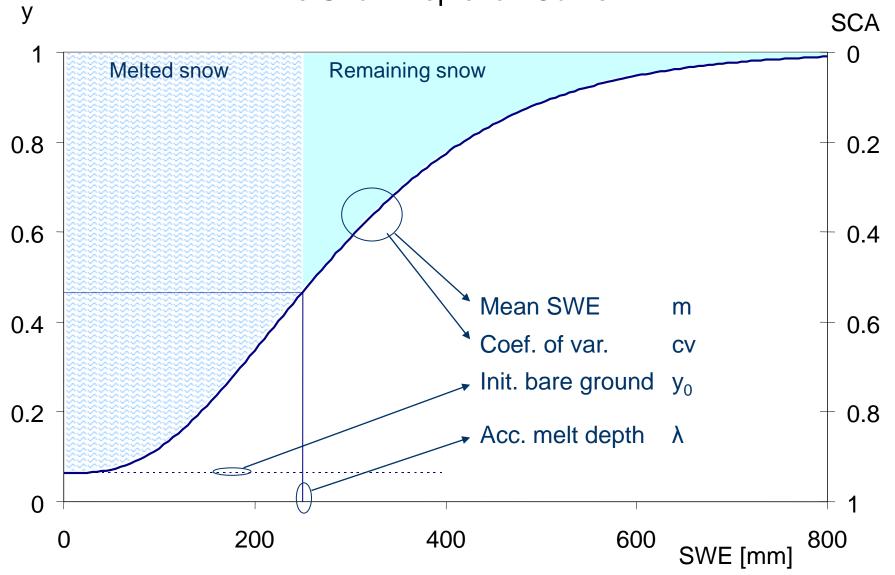
rammeverket DEMLab

hydrologisk modell


regional kalibrering

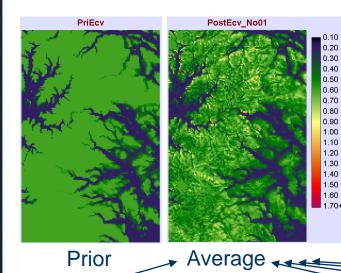
muligheter videre

🛈 SINTEF

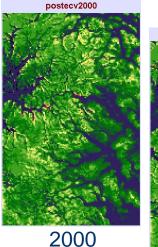

Regional pattern in the elevation dependency of precipitation?

- Long-term all-region average precipitation lapse rate:
 3.6 +/- 0.29 [% / 100m]
- A considerable part of the variation follows regional patterns
- Some places show strong variability over short distances
- Some extreme values may depend on a single or a few stations.

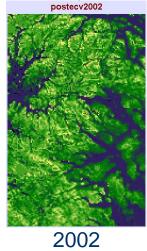
SINTEF


The Snow Depletion Curve

13


SINTEF

Results: Sub-grid heterogeneity CV



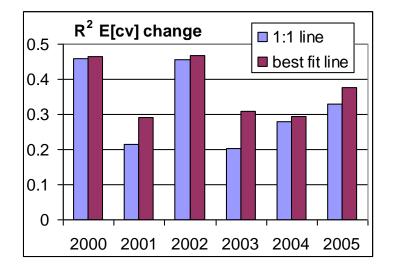
- Prior expectation depending on forest
- Each year a posteror expectation
- Average to estimate a calibrated map
- Evaluate using the left-out year

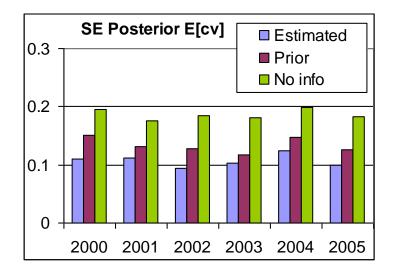
Prior

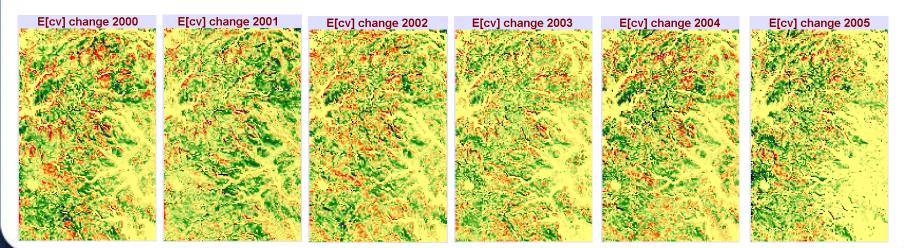
postecv2001

postecv2003 2003

postecv2004


2004

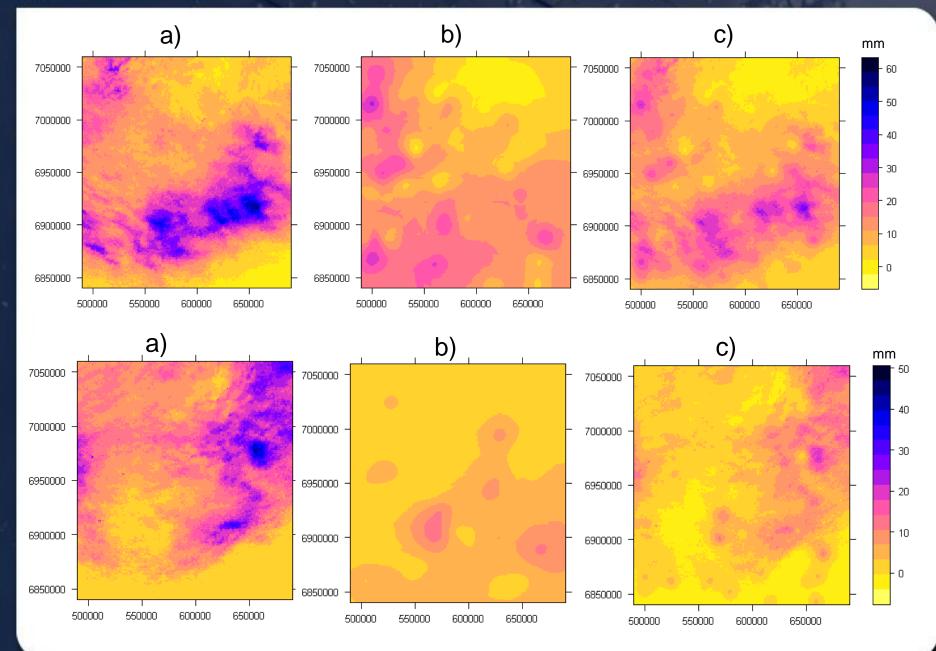


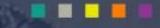

postecv2005

2001

Uncertainty in point precipitation data

Correction	Wind hour	Wind day	Exp kl. 1	Exp kl. 2	Exp kl. 3	Exp kl. 4	Exp kl. 5
Summer	0.06	0.03	0.05	0.07	0.09	0.12	0.18
Winter	0.08	0.03	0.09	0.23	0.32	0.40	0.51

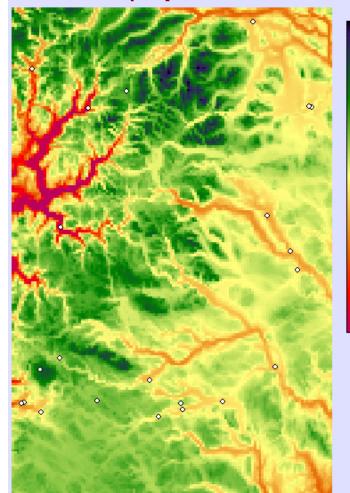



State of weather radar project

- Started summer 2009
- Weather radar data provides promising results
- A method for combining radar and point measurements has been demonstrated for days with rain everywhere. Further development assesses:
 - A better radar error model,
 - Temporal covariance for hourly values
 - Situations with dry subregions
 - Simulation rather than interpolation to estimate uncertainty

 Radar information is being assimilated in local weather models to improve short-term forecasts (met.no)
 Wind information can also be extracted


🕥 SINTEF


Temperature interpolation

Temp 2 jan 2000

	-11.00
	-10.00
	-9.00
	-8.00
	-7.00
	-6.00
	-5.00
	-4.00
	-3.00
	-2.00
	-1.00
1	0.00
	1.00
	2.00
	3.00
	4.00
1	5.00

Temp 3 jan 2000

<-11.00 -10.00 -9.00 -8.00 -7.00 -6.00 -5.00 -4.00 -3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.00+

Conclusions

- Distributed models are implemented outside GIS programs
- Due to a widely used GIS data type library, there is no reason to tie the model program to a specific GIS program
- GIS useful in almost all aspects of distributed modeling
- Current R&D in distributed modelling focuses on a regional approach, not the single catchment.
- Distributed hydrological modelling in early operationalisation phase.
- Open Source development encourages participation from many different users and contributors

Takk for oppmerksomheten