Hydro-meteorological Analysis of Langtang Khola Catchment, Nepal

Tirtha R. Adhikari¹, Lochan P. Devkota¹, Suresh .C Pradhan², Pradeep K. Mool³

- ¹Central Department of Hydrology and Meteorology Tribhuvan University
- ²Department of Hydrology and Meteorology, Nagpokhari, Nepal
- ³International Centre for Integrated Mountain Development, Lalitpur, Nepal

Contents

- Introduction and Background
- Objective of the study
- Study area
- Meteorological information
- Hydrological information
- Old snow survey information
- Methodology for flow simulation by SRM
- Future work

Introduction and Background

- Water is main natural resource of Nepal, socio-economy of the country through hydro-electricity and irrigation depends on it
- The current global mean temperature is projected to rise by 0.3 to 4.8 °C by the late-21st century (IPCC, 2013)
- Due to increase of temperature water cycle is intensified causing an increase in global mean precipitation (IPCC, 2013)
- At the same time, there is redistribution causing some areas to receive more or less precipitation depending on the season (IPCC, 2013)

9/11/2015

contd ...

 High variability in climate, lack of data, large uncertainties in climate change projection by models and uncertainty about the response of snow and glaciers

9/11/2015 4

Objective

 The main objective: Impact of climate change on flow simulation specially to understand the contribution of snow melt at Langtang Khola Hydrological Station

Data collection

Hydro-meteorological data are collection from DHM, government of Nepal, DHM is initiated snow and glacier hydrological activities in the year 1987 with the GTZ, Germany as a pilot project for 2 years. Full fledge project was started in the year 1990 and completed in 1997. During the project period:

- 6 hydroclimatic stations were established in high Himalayas of Nepal
- Introduced tracer technology for determination of river discharge and Established a tracer laboratory

Location of High altitude Hydro- meteorological Stations in Nepal

- Langtang 3800 m. Langtang
- •Khumbu **4335 m** Imja
- •Annapurna − **3470 m** Modi
- •Makalu − **3980 m** Barun
- •Kanjiroba **3770 m** Sanu Bheri
- •Humla **4220 m** Humla Karnali

Study Area

Meteorological station: Latitude: 28° 12′ 43″ Longitude: 85° 31′ 34″

Hydrological station Latitude: 28° 13′ 41″ Longitude: 85° 34′ 28″

Area: 361 Km²

Meteorology of Langtang Khola Kyangjing

Precipitation data information

Kyangjing Average Monthly PPT and its Variations (1988-2014)

Percentage of Seasonal PPT (1988-2014)

- 76 % of PPT occurs in monsoon season
- 5% of PPT occurs in winter season

Kyangjing Annual PPT (mm) (1988-2014)

Monthly Average Rainy Days (1988-2014)

Kyagjing Annual Rainy Days (1988-2014)

Monthly Average Temperature (1988-2008)

Warmest is July, the average TMAX is 12.3
 ⁰C

Coldest is Feb, the average TMIN is 7.2 °C

Monthly Average Sunshine duration situation (1988-2008)

- Lowest sunshine duration Jun and July due to monsoon cloud activity
- Highest sunshine duration occurs in April

Historical Snow Measurements in Langtang valley

Snow measurements work in Feb,1991
Department of Hydrology and Meteorology, Governments of Nepal

Historical Snow Measurement Data

Date: 25 Feb 1991 Plce Tsergo-Ri Langtang

Height 4980 m Time15 PM

WE = D* h* 10

Exposition SE Air Temperature -8°C

Slope Gentile Weather Cloudy

Level	1 Height cm	1 WE (mm)	2 Height (cm)	2 WE (mm)	2 Height (cm)	3 WE (mm)	4 Mean density (g/cm³)
1	28	59	29	62	29	60	0.21
2	47	198	47	202	47	194	0.42
3	40	170	42	180	40	172	0.42
Sum	115	427	118	444	116	426	0.37

Density = WE/(h*10)

Hydrology of Langtang Khola

Validity		
Rating Curve No.	From	То
1	01.01.1991	13.06.1993
2	14.06.1993	08.10.1993
1	09.10.1993	29.04.1997
2	30.04.1997	05.04.1999
1	06.04.1999	04.06.2002
3	05.06.2002	13.09.2002
2	14 09 2002	31 12 2006

Rating Curve of Langtang Khola (2006 - 2013)

Discharge (m3/s)

Langtang Khola Stage Height (m)_2013

Monthly Maximum Discharge in Langtang Kola

Annual Observed Discharge Trend (1988-2014)

Methodology for flow simulation by Snowmelt Runoff Model (SRM)

Flow simulation year

- After pre-processing and analyzing the hydro-meteorological data of Kyangjing
- 2000 2006 will be taken as parameter calibration year
- 2007 2013 will be taken as validation year

Introduction to Snowmelt Runoff Model (SRM)

- Developed by Martinec in 1975 in Swiss Snow and Avalanche Research Institute
- Estimation of daily stream flow in Mountain basins
- Based on degree day method, can be used to simulate/forecast
- Simple and Efficient

Snow Cover Mapping of Langtang

- MODIS Daily Snow products
- Preprocessing and processing of MODIS snow products using: MODIS Reprojection tool
- Which includes;
- **►** Mosaicking
- ➤ Spatial and temporal filtering

 Generation of daily snow cover area of Langtang Catchment

Basic snowmelt runoff model

$$Q_{n+1} = [c_{Sn} \cdot a_n (T_n + \Delta T_n) S_n + c_{Rn} \cdot P_n] (A.10000/86400) (1-k_{n+1}) + Q_n k_{n+1}$$
Snow melt

Rainfall

Flow Recession

Q: Basin discharge

n : Day indicator

T : Air temperature

P: Precipitation falling as rain

S: Snow covered area

A : Zonal area

k_{n+1}: Recession coefficient

a_n: Degree day factor

c_{sn},c_{rn}: correction for losses due to snowmelt and rainfall

Cont....

Cont...

7Parameters

Runoff Coefficients (c_s, c_r)

Degree Day Factor (a)

Temperature Lapse Rate (γ)

Critical Temperature (T_{crit})

Rainfall Contributing Area

Time Lag (L)

Recession Coefficient

Future work

- Calibration and Validation of SRM
- Simulate daily discharge
- Calculating runoff components in Langtang Catchment
- The research is still going on

Thank You