Hydrologic response to Black Carbon deposition in seasonally snow covered catchments in Norway

Felix Matt ¹ John F. Burkhart ^{1,2} Joni-Pekka Pietikäinen ³

FINNISH METEOROLOGICAL INSTITUTE

With funding from The Research Council of Norway "Greenland's Disappearing Glaciers -A Tale of Fire and Ice" *

NOVA NEXT | PBS

http://www.pbs.org/

* Article by Hannah Hoag; 19/05/2014; http://www.pbs.org/ "Greenland's Disappearing Glaciers -A Tale of Fire and Ice" *

NOVA NEXT | PBS

* Article by Hannah Hoag; 19/05/2014; http://www.pbs.org/

Simulations with the SNICAR model; Flanner et al., 2007; Flanner et al., 2009

Simulations with the SNICAR model; Flanner et al., 2007; Flanner et al., 2009

Outline

Methods

- Models
- Coupling
- Hydrologic simulations
- Catchments and input data
- Preliminary Results
- **Caveats and Conclusion**

Outline

Methods

- Models
- Coupling
- Hydrologic simulations
- Catchments and input data
- Preliminary Results
- **Caveats and Conclusion**

Methods - Models

Distributed hydrological model:

ShyFT Statkraft's Hydrologic Forecasting Toolbox ¹⁾

- Priestley Taylor for potential evaporation ²⁾
- Snow storage and melt via depletion curve ³⁾
- Kirchner model for discharge ⁴⁾
- NO routing (!)

- 1) https://github.com/statkraft/SHyFT
- 2) Priestley and Taylor (1972)
- 3) Kolberg and Gottschalk (2010)
- 4) Kirchner (2009)

Methods - Models

Radiative Transfer model for snow:

SNICAR* - Snow, Ice, and Aerosol Radiation model

Hemispheric reflectance of snow from

- impurity content: black carbon, dust, and volcanic ash
- snow optical grain size
- incident solar flux characteristics

Methods - Coupling

Snow routine

- Grain size model $\frac{g_s}{dt} = f(T)$
- Aerosol concentration model *

* From Krinner et al., 2006: Ice-free glacial northern Asia due to dust deposition on snow

Outline

Methods

- Models
- Coupling
- Hydrologic simulations
- Catchments and input data
- Preliminary Results

Caveats and Conclusion

Input data

DATA TYPE	SOURCE	INTERVAL
Discharge	Observations from NVE	2006 - 2012
 Meteorological forcing Temperature Precipitation Relative humidity Wind speed 	Observations from Met.no + NVE	2006 - 2012
Radiation (SW)	WATCH-Forcing-Data (EI)	2006 - 2012
BC deposition data	Flexpart (ECLIPSE data set)	2008 - 2010
	Remo-Ham (ECLIPSE data set)	2010 - 2012

Input data

	Remo-Ham (ECLIPSE data set)	2010 - 2012
BC deposition data	Flexpart (ECLIPSE data set)	2008 - 2010
Radiation (SW)	WATCH-Forcing-Data (EI)	2006 - 2012
 Meteorological forcing Temperature Precipitation Relative humidity Wind speed 	Observations from Met.no + NVE	2006 - 2012
Discharge	Observations from NVE	2006 - 2012
DATA TYPE	SOURCE	INTERVAL

Outline

Methods

- Models
- Coupling

Hydrologic simulations

- Catchments and input data
- Preliminary Results

Caveats and Conclusion

MODEL SCENARIOS

- Model Calibration with different deposition input
 - FLEXPART
 - REMO-HAM
 - CLEAN (no deposition)
 - still dynamic albedo model!
 - Effect of Black Carbon on hydrology
 - Comparison of simulations with deposition (FLEXPART and REMO-HAM) to CLEAN case

MODEL SCENARIOS

- Model Calibration with different deposition input
 - FLEXPART

-20

- REMO-HAM
- CLEAN (no deposition)
 - still dynamic albedo model!
- Effect of Black Carbon on hydrology
- Comparison of simulations with deposition (FLEXPART and REMO-HAM) to CLEAN case

Nash-Sutcliffe model efficiency (calibration):

-20

		CLEAN	FLEXPART	Remo-HAM	
	Atnsjoen	0.73	0.76	0.79	
	Viksvatn	0.76	0.80	0.83	
	Masi	0.53	0.81	0.78	
7 4					

Nash-Sutcliffe model efficiency (calibration):

-20

		CLEAN	FLEXPART	Remo-HAM	
/	Atnsjoen	0.73	0.76	0.79	and the second
	Viksvatn	0.76	0.80	0.83	
	Masi	0.53	0.81	0.78	

30

Nash-Sutcliffe model efficiency (calibration):

-20

	CLEAN	FLEXPART	Remo-HAM
Atnsjoen	0.73	0.76	0.79
Viksvatn	0.76	0.80	0.83
Masi	0.53	0.81	0.78

Including BC deposition makes a difference!

Nash-Sutcliffe model efficiency (calibration):

	CLEAN	FLEXPART	Remo-HAM
Atnsjoen	0.73	0.76	0.79
Viksvatn	0.76	0.80	0.83
Masi	0.53	0.81	0.78

- Including BC deposition makes a difference!
- Simulations seem to be better when BC is included!

MODEL SCENARIOS

- Model Calibration with different deposition input
 - FLEXPART

-20

- REMO-HAM
- CLEAN (no deposition)
 - still dynamic albedo model!
- Effect of Black Carbon on hydrology
 - Comparison of simulations with deposition (FLEXPART and REMO-HAM) to CLEAN case

Effect of BC on catchment hydrology

1-D model study by Skiles et al. (2012) *:

-20

"The clean snow cases reach a lower peak 1 to 2 weeks after the ..." [cases with aerosol forcing] "... with a less rapid decrease to melt-out ..."

Outline

Methods

- Models
- Coupling
- Hydrologic simulations
- Catchments and input data
- Preliminary Results
- **Caveats and Conclusion**

Caveats

- Lack of understanding in micro-physics (grain size growth, entrainment in melt, ...)
- Deposition data (so far) too little for long calibration and evaluation period
- Other light absorbing aerosols (dust, ...)?
- Lacking observational data

Conclusion

- Low deposition rates over Norway can significantly impact catchment hydrology
- Simulations are better when including deposition of BC
- BC responsible for a shift in hydrograph:
 - Earlier melt compared to CLEAN case
 - Lower discharge later in melt season due to shift of melt season

Acknowledgement

 Kaarle Kupiainen and Zbigniew Klimont from IIASA (Austria) provided the emission data for the REMO-HAM simulations.

• REMO-HAM simulations were carried out with the support MACEB project (<u>Mitigation of Arctic</u> warming by <u>controlling European black</u> carbon emissions); Finnish Meteorological Institute.

FINNISH METEOROLOGICAL INSTITUTE

References

Flanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch (2007), *Present day climate forcing and response from black carbon in snow*, J. Geophys. Res., 112, D11202, doi:10.1029/2006JD008003.

Flanner, M. G., C. S. Zender, P. G. Hess, N. M. Mahowald, T. H. Painter, V. Ramanathan, and P. J. Rasch (2009), *Springtime warming and reduced snow cover from carbonaceous particles*, Atmos. Chem. Phys., 9, 2481-2497.

Kirchner, J.W. (2009), *Catchments as simple dynamical systems: Catchment characterization, rainfall-runoff modeling, and doing hydrology backward*, Water Resources Research., 45, W02429, doi:10.1029/2008WR006912.

Kolberg S, Gottschalk L (2010), *Interannual stability of grid cell snow depletion curves as estimated from MODIS images.* Water Resour Res 46:W11555

Krinner, G., Boucher, O., and Balkanski, Y. (2006), *Ice-free glacial northern Asia due to dust deposition on snow*, Climate Dynamics, 27, 613–625.

Priestley, C.H.B., and R.J. Taylor. (1972), *On the assessment of surface heat flux and evaporation using large-scale parameters.* Mon. Weather Rev., 100:81-82.

Skiles, S. M., T. H. Painter, J. S. Deems, Ann C. Bryant, and C. C. Landry (2012), *Dust radiative forcing in snow of the Upper Colorado River Basin: Part II. Interannual variability in radiative forcing and snowmelt rates*, Water Resources Research, 48 (7) W07522.

Stohl, A., Klimont, Z., Eckhardt, S. et al. (2013), *Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions*. Atmospheric Chemistry and Physics. 13: 8833–8855. DOI:10.5194/acp-13-8833-2013.

~2-30 ng/g BC

~1100ng/g BC

2010/02/07

???? ng/g BC dust/soil? algae?

