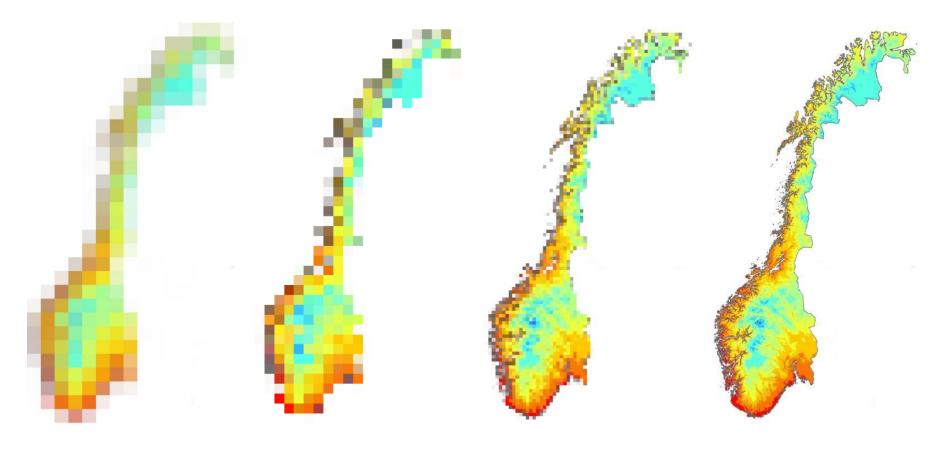
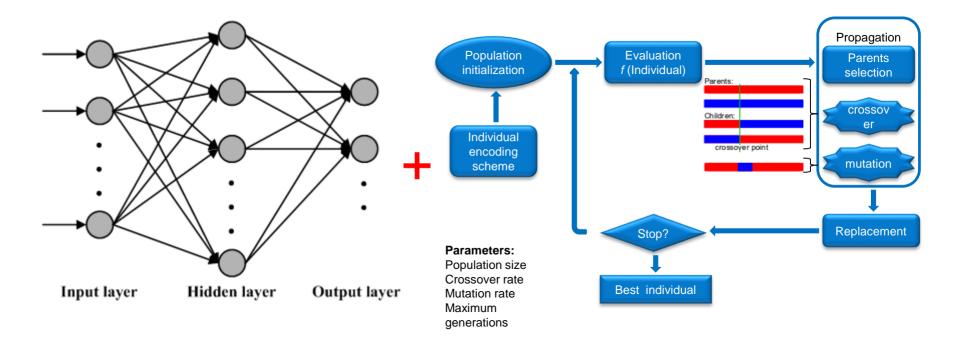
Meteorologisk

Downscaling Daily Temperature with Evolutionary Artificial Neural Networks


Published at SIMULTECH 2015 in July

Min Shi


11.09.2015

Downscaling

- Dynamic downscaling
- Statistical downscaling

Neural Evolutionary Algorithms

Artificial neural network

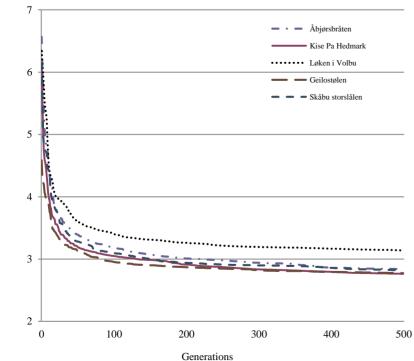
Evolutionary algorithm

Experiments

STATION	Name	Location
Known station1	Fiskåbygd	62.10N, 5.58E
Known station2	Nedre Vats	59.48N, 5.75E
Known station3	Drevsjø	61.89N, 12.05E
Known station4	Oslo Blindern	59.94N, 10.72E
Unknown station1	Åbjørsbråten	60.92N, 9.29E
Unknown station2	Løken I Volbu	61.12N, 9.06E
Unknown station3	Kise Pa Hedmark	60.78N, 10.81E
Unknown station4	Geilostølen	60.52N, 8.2E
Unknown station5	Skåbu storslålen	61.52N, 9.38E

Network Inputs:

Input
Maximum temperature at known station 1
Maximum temperature at known station 2
Maximum temperature at known station 3
Maximum temperature at known station 4
Distance between station 1 and unknown station
Distance between station 2 and unknown station
Distance between station 3 and unknown station
Distance between station 4 and unknown station
Elevation of unknown station


Network Output:

Maximum temperature of unknown stations

Fitness function: RMSE

Training data: Maximum daily temperature 1970-2010

Results

STATION	RMSE	R²
Åbjørsbråten	2.91	0.898
Løken i Volbu	3.19	0.893
Kise Pa	2.85	0.912
Hedmark		
Geilostølen	2.78	0.797
Skåbu storslålen	2.79	0.911

Average test results

Average training results

Conclusion and future work

- EANN shows good potential for the construction of high-resolution scenarios.
- Future works:
 - 1) Using reanalysis data set in experiments
 - 2) Compare the model with other method

3) Improve model by using multi-objective evolutionary algorithms.

ANN and EA applications

Function Optimization: 1) find the maximum or minimum output and the corresponding inputs for a given function 2) Tuning parameters

Regression Analysis: evolve a function or a model that matches the given input vectors and the corresponding outputs

Combination Optimization: Job-shop scheduling, circuit design, route optimization.

Machine Learning: classification, prediction, making decision, robotics.