The Impacts of Model Weighting on Quantifying Hydrological Responses to Climate Change

Presenter: Hui-Min Wang

Advisor: Jie Chen, Chong-Yu Xu Co-author: Hua Chen, Xiangquan Li

Content

01 Research Purpose

02 Study Area & Data

1 Research Purpose

Common way to investigate the climate change impacts:

- (1) Downscale outputs of global climate model (GCM) into watershed scale; and
- (2) Input downscaled data into hydrological model to project streamflow.

1 Research Purpose

Two problems in model weighting for impact studies:

The impact variable is related to multiple climate variables

A trade-off among different climate variables needs to be decided in order to obtain a single set of weights for impact studies.

> There is a non-linear relationship between the climate and impact variables

The weights calculated based on climate variables may be ineffective in the hydrological impacts.

Objectives:

- Assign weights to GCM simulations according to their ability to represent hydrological observations;
- Investigate the impacts of unequal weighting methods on the quantification of hydrological responses to climate change; and
- > Assess the influences of the bias correction to GCMs on the performances of model weighting.

Data

Outputs of 29 GCMs taken from CMIP5 dataset

- Reference period: 1970-1999; Future Period: 2070-2099
- Emission scenario: RCP8.5

GCMs

Modeling center	Model name	Resolution (Lon. × Lat.)	Modeling center	Model name	Resolution (Lon. × Lat.)
CSIRO-BOM	ACCESS1.0	$1.875^{\circ} \times 1.25^{\circ}$	МОНС	HadGEM2-CC	$1.875^{\circ} \times 1.25^{\circ}$
	ACCESS1.3	$1.875^{\circ} \times 1.25^{\circ}$		HadGEM2-ES	$1.875^{\circ} \times 1.25^{\circ}$
BCC	BCC-CSM1.1	2.8° $ imes$ 2.8°	INM	INM-CM4	$2.0^{\circ} \times 1.5^{\circ}$
	BCC-CSM1.1(m)	$1.125^{\circ} \times 1.125^{\circ}$	IPSL	IPSL-CM5A-LR	$3.75^{\circ} \times 1.9^{\circ}$
GCESS	BNU-ESM	2.8° $ imes$ 2.8°		IPSL-CM5A-MR	$2.5^{\circ} \times 1.25^{\circ}$
CCCMA	CanESM2	2.8° $ imes$ 2.8°		IPSL-CM5B-LR	$3.75^{\circ} \times 1.9^{\circ}$
NCAR	CCSM4	$1.25^{\circ} \times 0.94^{\circ}$	MIROC	MIROC-ESM-CHEM	$2.8^\circ \times 2.8^\circ$
	CESM1(CAM5)	$1.25^\circ \times 0.94^\circ$		MIROC-ESM	$2.8^\circ \times 2.8^\circ$
СМСС	CMCC-CMS	$1.875^{\circ} \times 1.875^{\circ}$	MIROC	MIROC5	$1.4^{\circ} \times 1.4^{\circ}$
	CMCC-CM	$0.75^\circ \times 0.75^\circ$	MPI	MPI-ESM-LR	$2.8^\circ \times 2.8^\circ$
	CMCC-CESM	$3.75^{\circ} \times 3.7^{\circ}$		MPI-ESM-MR	$1.4^{\circ} \times 1.4^{\circ}$
CNRM-CERFACS	CNRM-CM5	$1.4^{\circ} \times 1.4^{\circ}$	MRI	MRI-ESM1	$1.125^{\circ} \times 1.125^{\circ}$
CSIRO-QCCCE	CSIRO-Mk3.6.0	1.8° $ imes$ 1.8°		MRI-CGCM3	$1.1^{\circ} \times 1.1^{\circ}$
LASG-GESS	FGOALS-g2	$1.875^{\circ} \times 1.25^{\circ}$	NCC	NorESM1-M	$1.875^{\circ} \times 1.875^{\circ}$
NOAA GFDL	GFDL-CM3	$2.5^\circ \times 2.0^\circ$			
	GFDL-ESM2G	$2.5^{\circ} \times 2.0^{\circ}$			
	GFDL-ESM2M	2.5° $ imes$ 2.0°			

Methodology

Flow chart

Flow chart

Methodology

Downscaling Method

Daily bias correction (DBC) method consists of LOCI method and DT method

- > Local intensity scaling (LOCI) adjusts the wet-day frequency of simulated precipitation
- > Daily translation (DT) corrects biases in the frequency distribution of simulated precipitation amounts and temperature

Methodology

Hydrological Modeling

GR4J-6 model consists of **Oudin Evaporation Formulation**, **GR4J** rainfallrunoff model and **CemaNeige** snow module (6 parameters)

> The daily input data for the model includes Tmin, Tmax and precipitations.

Watershed Name	Calibration Period	NSE	Validation Period	NSE
Xiangjiang Watershed	1975-1987	0.916	1988-2000	0.871
Manicouagan-5 Watershed	1970-1979	0.926	1980-1989	0.881

Validation, Xiangjiang River

Validation, Manicouagan 5 River

Methodogy

Equal weighting method and 7 unequal weighting methods

- Five performance-based methods
- Two methods based on multiple criteria

Weighting Approaches

S

RAC

$$= \frac{4(1+R)^4}{(\sigma+1/\sigma)^2(1+R_0)^4}$$

R: correlation between simulation and observation $R_0:$ maximum correlation (=1) $\sigma:$ ratio of standard deviation

UREA
$$R_{i} = \left[\frac{\epsilon_{a}}{\operatorname{abs}(B_{a,i})}\right]^{m_{1}} \times \left[\frac{\epsilon_{v}}{\operatorname{abs}(B_{v,i})}\right]^{m_{2}}$$

 $B_{a,i}$: bias in climatological mean $B_{v,i}$: bias in variation

MA
$$E[y|D] = \sum_{i=1}^{N} p(f_i|D) \cdot E[p_i(y|f_i, D)]$$

D: observation series f_i : simulation series p: weight

CPI

В

$$CPI_{i} = \exp\left[-0.5\frac{(s_{i} - o_{i})^{2}}{\sigma_{ANN}^{2}}\right]$$

 s_i : simulated climatological mean

o_i: observed climatological mean

 σ_{ANN}^2 : inter-annual variance of the simulated series

PDF
$$PDF_i = \sum_{1}^{K} minimum(Z_s, Z_o)$$

 Z_s : simulated frequency in a given bin Z_o : observed frequency in a given bin

Weights

Multi-model mean hydrograph (Xiangjiang, Raw)

- Equal weighting underestimates streamflow before peak and overestimates streamflow after peak.
- Temperature-based weights induce to biased mean hydrograph, compared to streamflow-based weights.

J

Month

J

А

S 0 Ν

Multi-model mean hydrograph (Manicouagan-5, Raw)

> Although biases in the reference period are greatly reduced, there are still significant uncertainty in future period.

Since similar weights are assigned to ensemble members, there are few differences in the multi-model mean hydrograph.

Uncertainty of changes (Xiangjiang)

Monte-Carlo sampling Uncertainty of equal weighting is directly represented by the 29 values from GCMs;

Uncertainty of unequal weighting is represented by the 1000 samples taken from the Monte-Carlo experiment

- For streamflows simulated by raw GCMs, unequal \geq weights present reduced or similar uncertainty, compared to that of equal weighting;
- For streamflows simulated by bias-corrected \geq GCMs, the equal weighting and unequal weighting present similar performances in uncertainty evaluation.

(e) Annual streamflow, Bias-corrected

-20 -40

Change (%)

(h) Peak streamflow, Bias-corrected

Ensemble Uncertainty (Manicouagan-5)

(g) Low streamflow, Bias-corrected

(h) Peak streamflow, Bias-corrected

Conclusions

- For the streamflows simulated using raw GCM outputs without bias correction, the weights calculated based on streamflows can produce better hydrographs, compared with the weights calculated based on climate variables;
- When using bias-corrected GCM outputs to simulate streamflow, similar multimodel means and uncertainty of hydrological impacts for all unequal weighting methods are observed;
- It is likely that using bias correction and equal weighting is viable and sufficient for hydrological impact studies

Acknowledgements

This presentation is supported by the UTFORSK project of the Norwegian Center for International Cooperation in Education (SIU) (UTF-2016-long-term/10024).

Hui-Min Wang

huiminwang@whu.edu.on