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Research Purpose1

Multiple GCMs
（ Multi-model ensemble）

Downscaling Hydrological Model

Common way to investigate the climate change impacts:
(1) Downscale outputs of global climate model (GCM) into watershed scale; and
(2) Input downscaled data into hydrological model to project streamflow.

GCM Output

 How to deal with multi-model ensembles?

Common strategy:
equal weighting (model democracy)

GCMs

Climate Simulation Hydrological Simulation
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 Problems of equal weighting

[1] Different performances among GCMs
[2] Interdependence between GCMs



Research Purpose1

Objectives:
 Assign weights to GCM simulations according to their ability to represent hydrological 

observations;
 Investigate the impacts of unequal weighting methods on the quantification of hydrological 

responses to climate change; and
 Assess the influences of the bias correction to GCMs on the performances of model weighting.

 There is a non-linear relationship between the climate and impact variables

The weights calculated based on climate variables may be ineffective in the 
hydrological impacts. 

Two problems in model weighting for impact studies:

 The impact variable is related to multiple climate variables

A trade-off among different climate variables needs to be decided in order to obtain a 
single set of weights for impact studies.
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Study Area2

Xiangjiang Watershed (China) Manicouagan-5 Watershed (Canada)

Area: 52150 km2

Annual Runoff: 2212 m3/s
Average Temperature: 17 ℃

Flow regime is hardly affected by the 
snow accumulation and snowmelt.

Area：24610 km2

Annual Runoff: 1020 m3/s
Average Temperature:  -1 ℃

Flow regime is significantly affected by 
the snow accumulation and snowmelt.
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Data2

Outputs of 29 GCMs taken from CMIP5 dataset
 Reference period: 1970-1999; Future Period: 2070-2099

 Emission scenario: RCP8.5

Modeling center Model name Resolution
(Lon. × Lat.) Modeling center Model name Resolution

(Lon. × Lat.)

CSIRO-BOM
ACCESS1.0 1.875°× 1.25°

MOHC
HadGEM2-CC 1.875°× 1.25°

ACCESS1.3 1.875°× 1.25° HadGEM2-ES 1.875°× 1.25°

BCC
BCC-CSM1.1 2.8°× 2.8° INM INM-CM4 2.0°× 1.5°

BCC-CSM1.1(m) 1.125°× 1.125°
IPSL

IPSL-CM5A-LR 3.75°× 1.9°
GCESS BNU-ESM 2.8°× 2.8° IPSL-CM5A-MR 2.5°× 1.25°
CCCMA CanESM2 2.8°× 2.8° IPSL-CM5B-LR 3.75°× 1.9°

NCAR
CCSM4 1.25°× 0.94°

MIROC
MIROC-ESM-CHEM 2.8°× 2.8°

CESM1(CAM5) 1.25°× 0.94° MIROC-ESM 2.8°× 2.8°

CMCC
CMCC-CMS 1.875°× 1.875° MIROC MIROC5 1.4°× 1.4°
CMCC-CM 0.75°× 0.75°

MPI
MPI-ESM-LR 2.8°× 2.8°

CMCC-CESM 3.75°× 3.7° MPI-ESM-MR 1.4°× 1.4°
CNRM-CERFACS CNRM-CM5 1.4°× 1.4°

MRI
MRI-ESM1 1.125°× 1.125°

CSIRO-QCCCE CSIRO-Mk3.6.0 1.8°× 1.8° MRI-CGCM3 1.1°× 1.1°
LASG-GESS FGOALS-g2 1.875°× 1.25° NCC NorESM1-M 1.875°× 1.875°

NOAA GFDL
GFDL-CM3 2.5°× 2.0°

GFDL-ESM2G 2.5°× 2.0°
GFDL-ESM2M 2.5°× 2.0°

GCMs



Methodology3

Climate
simulation GCMs (CMIP5) & Observation

Streamflow
simulation Hydrological model

Weights
assignment

Bias
correction Statistical downscaling

Impact
evaluation Multi-model mean Ensemble uncertainty

Equal weighting

Flow chart



Methodology3

Climate
simulation GCMs (CMIP5) & Observation

Streamflow
simulation Hydrological model

Weights
assignment

Bias
correction No bias-correction Statistical downscaling

Impact
evaluation Multi-model mean Ensemble uncertainty

Equal REA PI RAC UREA BMA CPI PDF

Flow chart
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Methodology3

Downscaling Method

Daily bias correction (DBC) method consists of LOCI method and DT method
 Local intensity scaling (LOCI) adjusts the wet-day frequency of simulated precipitation

 Daily translation (DT) corrects biases in the frequency distribution of simulated precipitation amounts and temperature

OBS

GCM-REF

OBS
GCM-REF

OBS-REF

OBS-FUT



Methodology3

Hydrological Modeling

GR4J-6 model consists of Oudin Evaporation Formulation , GR4J rainfall-

runoff model and CemaNeige snow module (6 parameters)
 The daily input data for the model includes Tmin, Tmax and precipitations.

Watershed Name Calibration
Period NSE Validation 

Period NSE

Xiangjiang Watershed 1975-1987 0.916 1988-2000 0.871
Manicouagan-5 

Watershed 1970-1979 0.926 1980-1989 0.881

Validation, Xiangjiang River Validation, Manicouagan 5 River

NS=0.871 NS=0.881



Methodology3

Weighting Approaches

PI 𝑃𝑃𝑃𝑃𝑖𝑖 = 𝑒𝑒
−
𝐵𝐵𝑖𝑖
2

𝜎𝜎𝐵𝐵
2 ×

1

1 + ∑𝑗𝑗≠𝑖𝑖𝑁𝑁 𝑒𝑒− �𝐷𝐷𝑖𝑖𝑖𝑖
2 𝜎𝜎𝐷𝐷

2

𝐵𝐵𝑖𝑖: bias to observation in climatological mean
𝜎𝜎𝐵𝐵: skill radius of model performance
𝐷𝐷𝑖𝑖𝑗𝑗: distance between 2 GCMs in climatological mean
𝜎𝜎𝐷𝐷: uniqueness radius of model interdependence

REA 𝑅𝑅𝑖𝑖 =
∈𝑣𝑣

abs 𝐵𝐵𝑣𝑣,𝑖𝑖

𝑚𝑚

×
∈𝑣𝑣

abs 𝐷𝐷𝑣𝑣,𝑖𝑖

𝑛𝑛 1/𝑚𝑚𝑛𝑛 ∈𝑣𝑣: natural variability
𝐵𝐵𝑣𝑣,𝑖𝑖: bias to observation
𝐷𝐷𝑣𝑣,𝑖𝑖: difference to multi-model mean in future

Equal weighting method and 7 unequal weighting methods
 Five performance-based methods

 Two methods based on multiple criteria

Performance
criterion

Independence
criterion

Performance
criterion

Convergence
criterion



Methodology3

RAC 𝑆𝑆 =
4 1 + 𝑅𝑅 4

𝜎𝜎 + 1/𝜎𝜎 2 1 + 𝑅𝑅0 4

𝑅𝑅: correlation between simulation and observation
𝑅𝑅0: maximum correlation (=1)
𝜎𝜎: ratio of standard deviation

Weighting Approaches

UREA 𝑅𝑅𝑖𝑖 =
∈𝑎𝑎

abs 𝐵𝐵𝑎𝑎,𝑖𝑖

𝑚𝑚1

×
∈𝑣𝑣

abs 𝐵𝐵𝑣𝑣,𝑖𝑖

𝑚𝑚2
𝐵𝐵𝑎𝑎,𝑖𝑖: bias in climatological mean
𝐵𝐵𝑣𝑣,𝑖𝑖: bias in variation

BMA 𝐸𝐸 𝑦𝑦|𝐷𝐷 = �
𝑖𝑖=1

𝑁𝑁

𝑝𝑝 𝑓𝑓𝑖𝑖|𝐷𝐷 � 𝐸𝐸 𝑝𝑝𝑖𝑖 𝑦𝑦|𝑓𝑓𝑖𝑖 ,𝐷𝐷
𝐷𝐷: observation series
𝑓𝑓𝑖𝑖: simulation series
𝑝𝑝: weight

CPI CPI𝑖𝑖 = exp −0.5
𝑠𝑠𝑖𝑖 − 𝑜𝑜𝑖𝑖 2

𝜎𝜎𝐴𝐴𝑁𝑁𝑁𝑁2

𝑠𝑠𝑖𝑖: simulated climatological mean
𝑜𝑜𝑖𝑖: observed climatological mean
𝜎𝜎𝐴𝐴𝑁𝑁𝑁𝑁2 : inter-annual variance of the simulated series

PDF PDF𝑖𝑖 = �
1

𝐾𝐾

minimum 𝑍𝑍𝑠𝑠,𝑍𝑍𝑜𝑜
𝑍𝑍𝑠𝑠: simulated frequency in a given bin
𝑍𝑍𝑜𝑜: observed frequency in a given bin
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Results4

Weights

 The rank of the ability to differentiate reliability of GCMs:

REA > UREA ≈ CPI > RAC> BMA ≈ PI > PDF

 When using bias-corrected climate outputs, all weighting methods tend to 

assign more similar weights to GCMs.
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Results4

Multi-model mean hydrograph (Xiangjiang, Raw)

J F M A M J J A S O N D

Month

0

1000

2000

3000

4000

5000

6000

7000

8000

St
re

am
flo

w
 (m

3
/s

)

(a) Xiangjiang, RT
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Reference, RQ

Reference, RT Reference, RP

 Equal weighting underestimates streamflow before 

peak and overestimates streamflow after peak.

 Temperature-based weights induce to biased mean 

hydrograph, compared to streamflow-based weights.



Reference, RQ

Reference, RT Reference, RP

Results4

Multi-model mean hydrograph (Manicouagan-5, Raw)

 Temperature- and precipitation-based weights do 

not induce to significantly biased hydrograph.

 Streamflow-based weights have slightly better 

performances.



Results4

Multi-model mean hydrograph (Bias-corrected streamflow)

 Although biases in the reference period are greatly reduced, there are still significant uncertainty in future period.

 Since similar weights are assigned to ensemble members, there are few differences in the multi-model mean 

hydrograph.

Xiangjiang, Reference, DQ Xiangjiang, Future, DQ

Manicougan-5, Reference, DQ Manicougan-5, Future, DQ



Results4

Uncertainty of changes (Xiangjiang)
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 Monte-Carlo sampling
Uncertainty of equal weighting is directly 
represented by the 29 values from GCMs;

Uncertainty of unequal weighting is 
represented by the 1000 samples taken 
from the Monte-Carlo experiment

 For streamflows simulated by raw GCMs, unequal 

weights present reduced or similar uncertainty, 

compared to that of equal weighting;

 For streamflows simulated by bias-corrected 

GCMs, the equal weighting and unequal weighting 

present similar performances in uncertainty 

evaluation.



Results4

Ensemble Uncertainty (Manicouagan-5)
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Conclusions5

 For the streamflows simulated using raw GCM outputs without bias correction, 
the weights calculated based on streamflows can produce better hydrographs, 
compared with the weights calculated based on climate variables;

 When using bias-corrected GCM outputs to simulate streamflow, similar multi-
model means and uncertainty of hydrological impacts for all unequal 
weighting methods are observed;

 It is likely that using bias correction and equal weighting is viable and sufficient 
for hydrological impact studies 
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