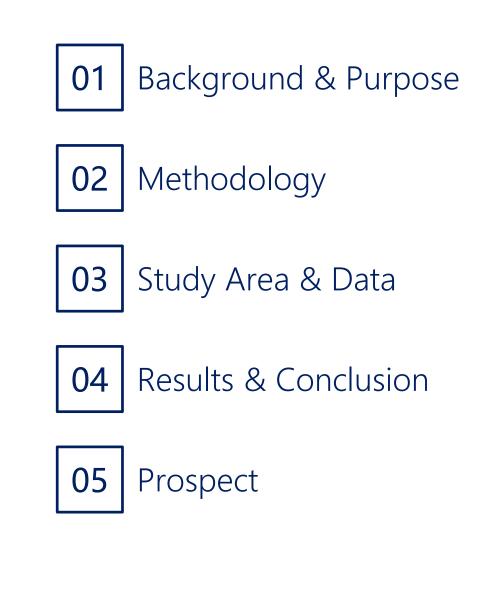
Acknowledgement: This presentation is supported by the UTFORSK project of the Norwegian Center for International Cooperation in Education (SIU) (UTF-2016-long-term/10024).

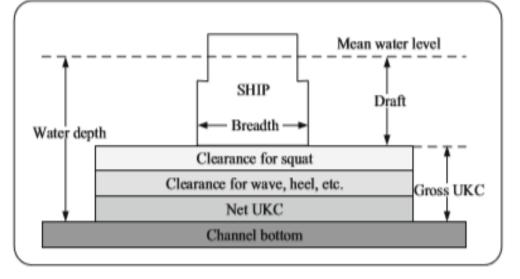
A statistical technique for designing the lowest navigable water level under changing environment


> Presenter: Lu Wang Advisor: Prof. Ping Xie Prof. Chong-Yu Xu

18/09/2019 Lillehammer Wuhan University & University of Oslo

Content

1. Background &Purpose


The lowest navigable water level

• Definition

The minimum water level which allows standard ships or fleets to navigate safely in inland rivers.

Relationship between water level, ship draft and UKC

01 Background & Purpose

Precipitation

Unused land

Water surface

Wetland

Urb

River

Interflow

Groundwater

Evaporation

Evapotranspiration

Problems:

Soil

Woodland

- ✓ changes in climate
- human activities , i.e. ,the constructions of water infrastructure project , urban expansion

Nonstationary characteristic

01 Background & Purpose

POLICYFORUM

CLIMATE CHANGE

Stationarity Is Dead: Whither Water Management?

Climate change undermines a basic assumption that historically has facilitated management of water supplies, demands, and risks.

P. C. D. Milly,^{1*} Julio Betancourt,² Malin Falkenmark,³ Robert M. Hirsch,⁴ Zbigniew W. Kundzewicz,⁵ Dennis P. Lettenmaier,⁶ Ronald J. Stouffer⁷

The high-order moments of water level series become time-varying

A more reliable way

A statistical technique based on decomposition and integration idea and second-order moment variation analysis was proposed

01 Background & Purpose

- Decomposition and integration idea
- Second-order moment variation analysis
- Guaranteed rate-frequency method

Using non-stationary frequency analysis models

- Time-varying probability distribution model
- Mixed distribution method for hydrological frequency analysis

Converting the hydrological time series from non-stationary to stationary

 Decomposition and integration idea Transform the original non-stationary series into stationary ones corresponding to different environmental conditions (i.e. the past, the current, or the future). Provided that stationary hydrological data in different periods are gained, conventional design methods can be used.

Preliminary assumption

• Additive function

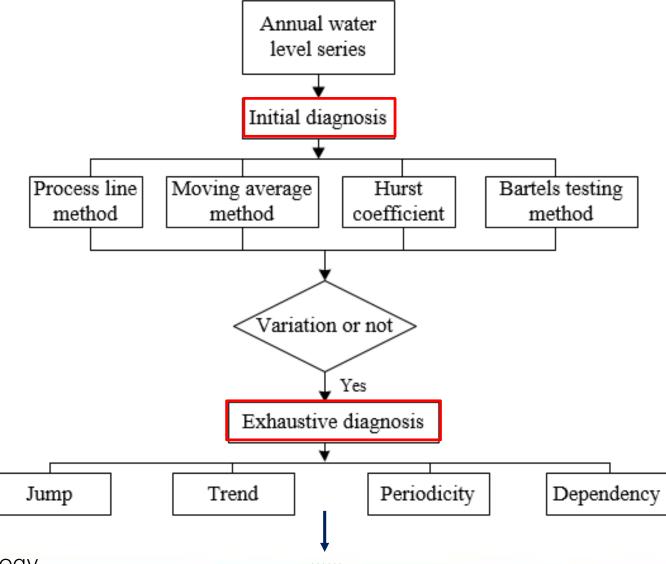
```
hydrological time series

\uparrow

X_t = Y_t + S_t

\downarrow \downarrow

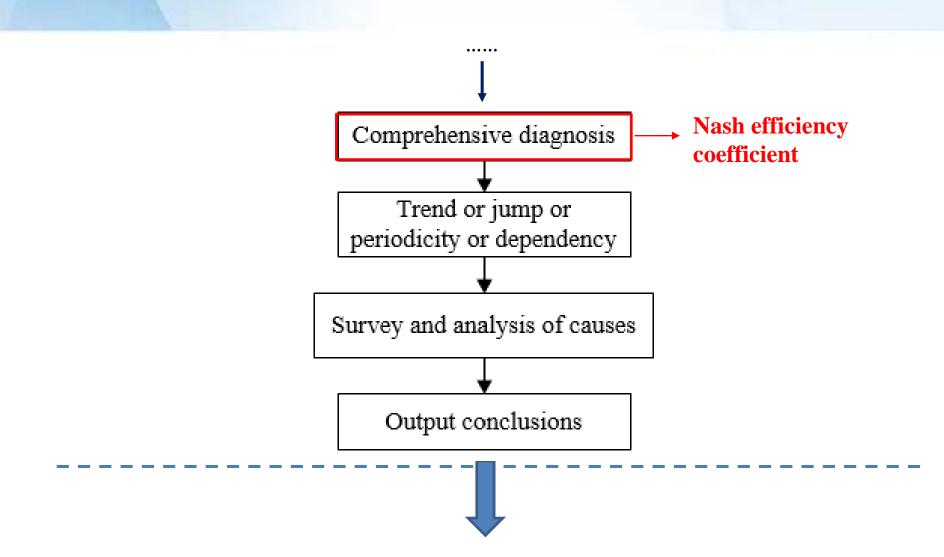
deterministic components


• trend

• jump

• periodicity

(time domain)
```


Step I Detect the trend, jump, periodicity and dependence of the annual water level series

Exhaustive diagnosis

	· · · · · · · · · · · · · · · · · · ·	
Jump	 Moving F test Moving run test Sequential cluster method Lee-heghinan method Mann-Kendall method Optimal information division 	8. Brown-Forysthe method 10.Bayesian method
Trend	 Linear regression method Spearman rank correlation Kendall rank correlation method 	
Periodicity	 Power spectrum analysis Maximum entropy spectrum Harmonic analysis method Simple partial wave method 	
Dependency	1. Autocorrelation coefficient 2. Variance spectral density m	
02 Methodology		

.

Hydrological alteration diagnosis system

Step II All deterministic components detected should be removed from the observed series to gain stochastic parts.

$$x_t' = \frac{x_t - a_t}{b_t}$$

Where x_t is observed water level series; x_t ' is the stochastic part of the original series; a_t is the deterministic component of observed series; b_t is the deterministic component of residual square series;

Step III Detect the trend, jump, periodicity and dependence of residual square series

• To analyze whether the variance of the observed series has changed over time.

Step IV Compose the stochastic component and the deterministic component under each certain environment

$$x_{t,t_0} = a_{t_0} + b_{t_0} x_t' = a_{t_0} + \frac{b_{t_0}}{b_t} (x_t - a_t)$$

Where x_{t,t_0} is the stationary annual water level series corresponding to the environment of the year t_0 ;

 x_t is original water level series;

 x_t ' is the stochastic part of the original series;

 a_t is the deterministic component of original series;

 a_{t_0} is the deterministic component of original series of the year t_0 ;

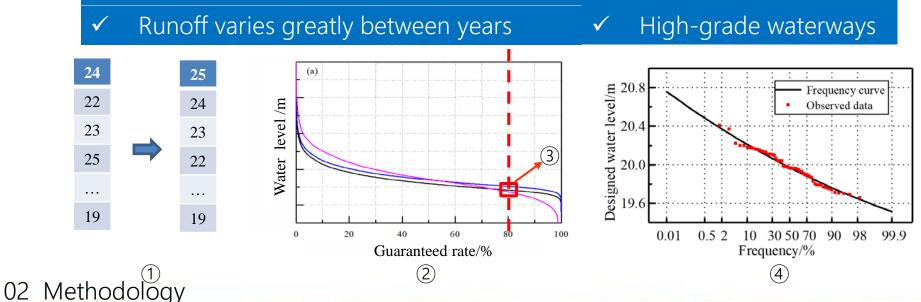
 b_{t_0} is the deterministic component of residual square series of the year t_0 ;

Step V Design the lowest navigable water level corresponding to different circumstances

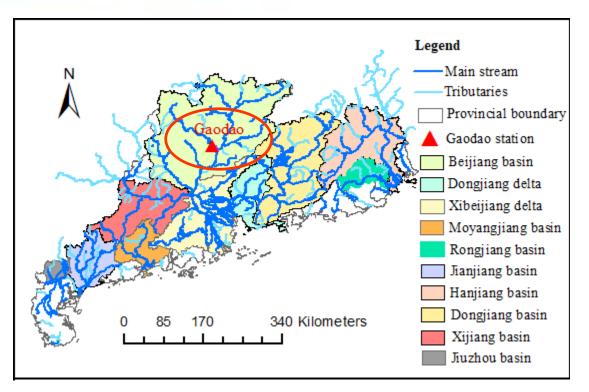
• Based on new reconstructed series by using guaranteed rate-frequency method.

Guaranteed Rate-Frequency Method

1) The observed daily water level data each year should be arranged in descending order.


② Draw the water level duration curves of each year.

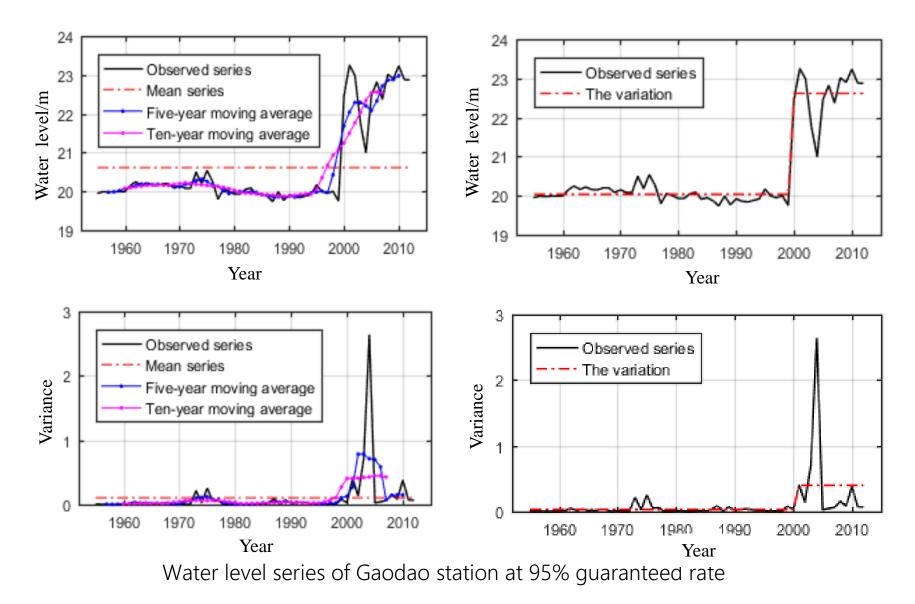
③ Obtain the water level value at the **certain guaranteed rate** from each curve . Considers the duration of the navigation damage in a year


- ④ Compose a new annual water level series and use hydrological
- frequency calculation to obtain the frequency distribution.

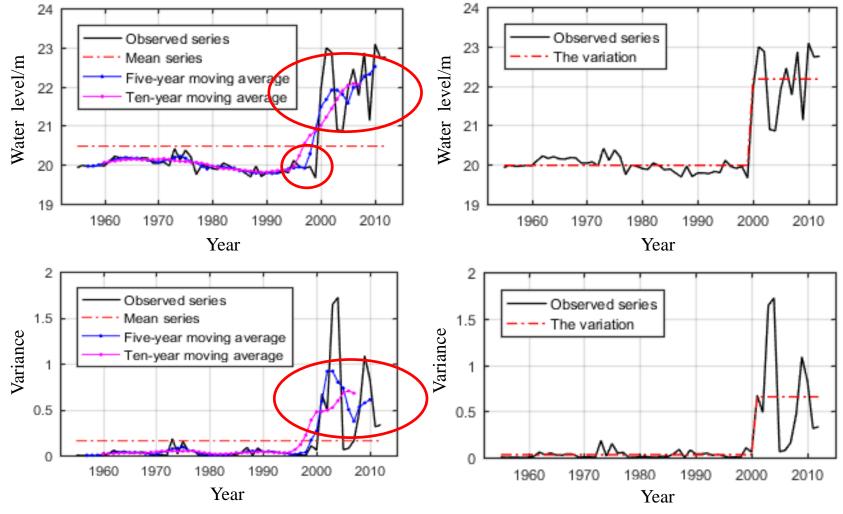
Considers the frequency of this damage occurs among the years

Suitable for basins where:

3. Study area & Data

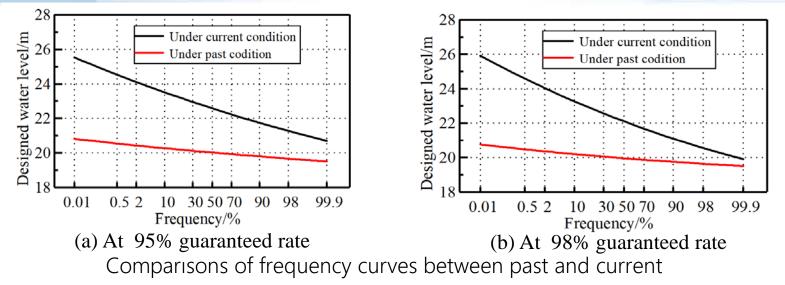


Main basins in Guangdong province


- Study area: Guangdong Province , China Inland waterways: 11,883 km
- Study object: Gaodao hydrological station Catchment area: 9007km² Data series: Daily water level data from 1955 to 2012

03 Study Area & Data

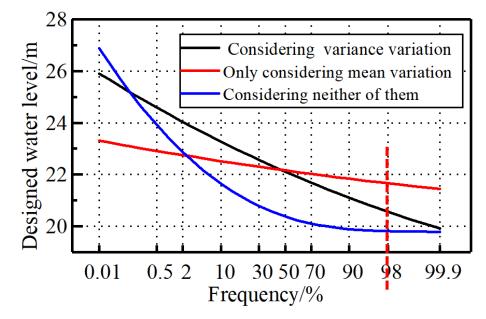
4. Results & Conclusion



04 Results & Conclusion

Water level series of Gaodao station at 98% guaranteed rate

04 Results & Conclusion


Desigr Water lev			riods con guarantee		variance variation 98% guaranteed rate			
Design fre	quency/%	P=75%	P=80%	P=90%	P=75%	P=80%	P=90%	
Designed va past		19.91	19.88	19.80	19.86	19.83	19.76	
Designed curre		22.13	22.02	21.74	21.56	21.43	21.11	
Differe	nce/m	2.22	2.15	1.94	1.71	1.60	1.34	

✓ The difference of the lowest navigable water level between the current and past environments accounts for around 21%-37% of the ship draft.

---- The water level variation is an important factor that cannot be ignored for navigation safety.

Variation Coefficient Cv of Frequency Curve under Different Conditions

	95% guara	inteed rate	98% guaranteed rate		
Condition	past	current	past	current	
Considering variance variation	0.0093	0.0305	0.0088	0.0382	
Considering mean variation only	0.0110	0.0100	0.0130	0.0120	
Considering neither	0.04	400	0.0380		

Comparison of frequency curves at 98% guaranteed rate (current)

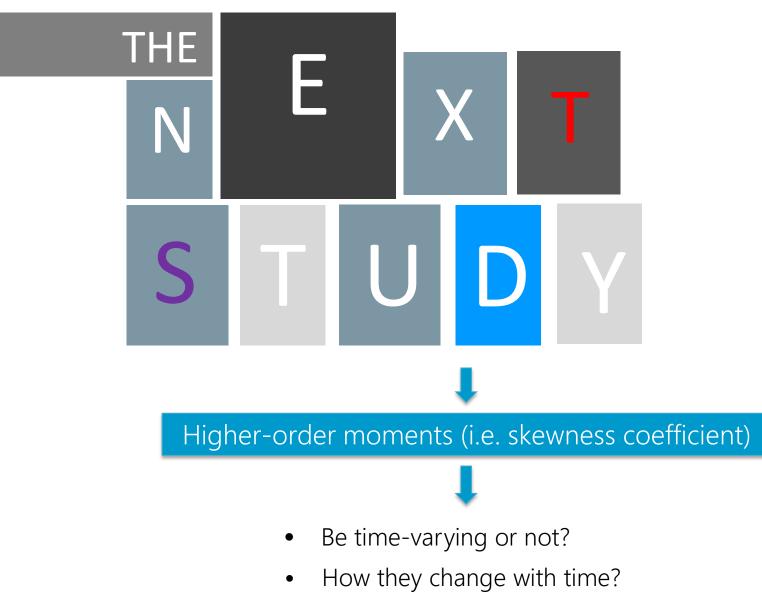
✓ The differences of the designed values among three situations are prominent.
 ✓ Confirming the necessity of the mean variation and variance variation analysis.

04 Results & Conclusion

Design values only considering mean variation

Water level series	95% guaranteed rate		98% guaranteed rate			
Design frequency/%	75%	80%	90%	75%	80%	90%
Designed values in the past/m	19.88	19.85	19.77	19.80	19.76	19.66
Designed values in current/m	22.45	22.42	22.34	21.99	21.95	21.84
Difference between the current with and without considering variance variation /m	-0.32	-0.41	-0.63	-0.33	-0.40	-0.60

Design values without considering any variation


Water level series	95% g	Juarantee	d rate	98% guaranteed rate		
Design frequency/%	75%	80%	90%	75%	80%	90%
Designed values/m	20.14	20.07	19.95	19.89	19.84	19.74
Difference between the current with and without considering non-stationarity /m	2.24	2.18	2.00	1.51	1.44	1.21

✓ The influence of variance variation increases with the increase of design frequency.

This design method has greater guiding significance for the lowest navigable water level design in high-grade waterways.

04 Results & Conclusion

5. Prospect

• How to apply the theory?

Acknowledgement: This presentation is supported by the UTFORSK project of the Norwegian Center for International Cooperation in Education (SIU) (UTF-2016-long-term/10024).

Thank you! Presenter: Lu Wang

18/09/2019 Lillehammer Wuhan University & University of Oslo

