IMPROVING LONG-TERM HYDROPOWER INFLOW FORECASTS BY ASSIMILATING SNOW DATA

Felix Matt¹, Jan Magnusson^{1,2}, Geir Nevdal³

¹ Statkraft, ² NVE/Statkraft, ³ NORCE

The basic challange

Long historical snow surveys in Statkraft

SNOW SURVEY IN NORE POWER PLANT AREA

Hydrological model – SHYFT¹

- Distributed hydrologic modelling
- Air temperature and precipitation input
- Temperature-index snow model
- Routing and water balance scheme

Problem description

We have

- Model estimates (uncertain!) of snow across catchment
- Few measurements of snow (uncertain!)
- Runoff observations

We want

 Improve model snow state, and hopefully get better inflow forecast

We need

- Method to improve snow state at unobserved locations taking into account:
- Modelled and measured snow
- uncertainties in modelled and measured snow
- relationships between model grid points

Data assimilation algorithm

Ensemble simulations

6 Magnusson, J., D. Gustafsson, F. Hüsler, and T. Jonas (2014), Assimilation of point SWE data into a rdistribute model comparing two contrasting methods, Water Resour. Res., 50, doi:10.1002/2014WR015302.

Study area and data

Refsdal catchment

- 74 km²
- 530 to 1276 m.a.s.l.
- Mean annual precipitation 2200 mm (50 % falls as snow)
- 15 snow melt seasons (2000-2016)

Trondheim

 $\overline{\mbox{\scriptsize (i)}}$

17

 \odot

 $\overline{\mbox{\scriptsize (i)}}$

Grønebotn	Katladalene	Ovridsfjell	MAE [%]
			10
Х			7
	Х		6
		Х	15
Х	Х		6
Х		Х	8
	Х	Х	8
Х	Х	Х	7

Summary

- Performance of updating algorithm tested by comparing simulated to observed discharge in a 120 days forecast period and 15 snow seasons
- Benchmark against basecase without updating
- > 7 years show improvements, 2 of which notably
- > 3 years show small decrease in model performance
- > Data from one measurement location tended to degrade the forecast

www.statkraft.com