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What's behind the boom in machine learning?

* Big advances in machine learning architectures, training algorithms and frameworks.

— Transformer architectures.
— Self-supervised training, diffusion modelling.

— PyTorch (and others) with huge community and big-tech support.

* Big advances in computational power.

— GPUs and other accelerators.

— NVIDIA (and others) investing in improving the efficiency of basic algorithmic components.

 Consuming huge amounts of data.

— OpenAl (and others) have trawled the web for all text/images etc.

— Bad data will lead to bad models.




What kind of things are people using ML to do in the earth system?

Just about everything!




Machine learning automated anomaly attribution

LSTM autoencoder Random forest classifier
Detect Anomalies Improves classification

Observation anomaly

M. Dahoui
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Hybrid NWP+ML - collaboration with CEREA, France
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Hybrid models augment standard physics-based
models with a data-driven component:

Xi+1 = MPYYS(x,) + F St8l(x,,p)

A hybrid model is already used in the ECMWF weak
constraint 4DVar analysis. Can the hybrid model
approach be extended to the forecast?

Bonavita & Laloyaux, 2020 trained offline a neural
network (NN) to learn model errors, showing
improved forecast skill scores in the full IFS

Farchi et al., 2022 developed this idea introducing
online training of the NN inside 4DVar: this
outperforms results from offline training in simplified
models.

Current work, testing in the full IFS: results appear
promising!
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Introduction of bias correction within 4D-var
improved stratospheric representation.
Next step NN trained within 4D-var...

Alban Farchi & Marc Bocquet
@ CEREA



Using neural network emulators

a 3D signal: change to longwave heating rate (troposphere)

b 3D prediction: change to longwave heating rate (troposphere)
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PoET — Postprocessing Ensembles with Transformers (collaboration with Microsoft)
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* Improving 2m-temperature ensemble predictions.
» Using transformers to debias and improve the calibration of forecasts.

» Forecasts have smaller bias and better calibration, and compares favourably to a leading method from statistical postprocessing.

Jonathan Weyn, Microsoft
Visiting Scientist at ECMWF
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What's behind the boom in machine learning?

» Big advances in machine learning architectures and training algorithms.

» Big advances in computational power.

» Consuming huge amounts of data.

— Learning from observations is hard.
« Data is stored in many different places, and formats.
» Observations change over time.

 Data has biases and errors.

* Requiring multiple variables can mean using multiple observation datasets.




Reanalysis for machine learning

» Reanalysis provides singular point of “truth”.

* Many variables.

« All times.
. . O adecno e ——
« All points in space. !’" Im %
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» All accessible from one
access point.

CECMWF = I == 4+ _ I 1 = =



Is reanalysis sufficient to learn a global forecasting system?

Simple problem framing.
— Given state of ERAS at a random point in time, x(t).
— Construct a model F, a neural network parametrised by weights.
— Predict a future state of ERAS, x(t+dt ) = F( x).
— Seek to minimise [ x(t+dt) - F( x(t) ) ] 2using gradient descent.

* i.e. change the weights in such a way to decrease the MSE.

— Randomly draw a new x and repeat.
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ECMWEF's
Peter Dueben
and Peter Bauer
publish a paper
on using ERAS
at ~500km
resolution to
predict future
z500.

a very busy and FAST evolving landscape
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What ML
models are
showing...




Day 4 forecasts over Europe (valid 7 Sept 2023 12UTC )

) -~ o7 N B | J D - S S = N N
/;/ e~ /\"‘ T } i f »{ ) \ :\*\ SN K \/ ///' % P25 v N T
: /// ’h—‘\ ¢ > 4 iy X by N \ T’/ 4/// 7; - \\\\\\ ‘-,"'
~\. 0\ N ‘ 0y - N . A 5 I Y {
N ~ - .: N \i’\m ,' 9 e / \ 2 3 v . \ 4 | -




Time-series of day 6, RMSE over Europe

Same starting point....similar results
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What the analysis is showing: an undeniable skill

Anomaly correlation | 500hPa geopotential Anomaly correlation | 850hPa wind speed
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20220101 00z to 20221231 12z 20220101 00z to 20221231 12z

100 95

90 .......... ............ .......... .......... ........... ............. ............ ............

90 -EXRNITEIEIE R SRR RIRE N5 oo N S T S S e e ]

80 22205003000 dadvasacsasaciie: ....... Bocoockbios Weoccpoozco: Zcosconaocaoc Sooocancsncnc Zooacoasacan i

N e R | | | : _ | | : : :
. « . N . K . . 9 75 gl - R nc e SN ey £ e S

70 .......... ............. ............ ............

%

70 ............. ............ ............ ......... ........... ............ ............ : : : : : : 3 : : :
: : : : : : : 65 R T D, e S L .

5 ; ; 5 ; ; 5 5 50 T . N Ey T - ST N A S
60 99059 9590990000030020500055 000000 cocoooog oG o C I s 00 555555%555500200050000000¢ SRELARRY - - - . . = 2 . 9

: - : - : : == PanguWeather : : : : :
—— PanguWeather 55 L guvveatner - ............. ............ ............. N RN . ............

—eo— ECMWF High luti
—o— ECMWEF High resolution ‘ IQ resolu IOﬁ

50 RS — E— - ... ferarnanat . S Ty 50

45 [ Soaaooa0ssag0basasanccooas Zoocscooconay Sy . . VECRL ) TERER fooocoosaooas Zoco0ccaoony ;

40 40

1 2 3 4 5] 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Forecast Day Forecast Day

CECMWF = I == += _ 2 1 = E 35 Wl 1 = = 55 ¢ I ™ D #= [+ ] B = EkEeeE =M ] I E 16



Digging into the scores: RMSE, bias and forecast variability DJF 2022/2023

Why is the RMSE lower in PanguWeather?

Power Spectra of single Analysis and Forecast: z250

Approximate scale (km) ' * Not a clear reduction in forecast activity in
25000 5000 1000

Pangu\Weather
« ...but smoothing of small scales
« Strong model drift in Pangu
« ...but regional biases are improved

Scope for further investigations to understand
the differences

Power (m*)

Total wavenumber (n




What about
high-impact
events?




Storm Eunice (2.5-day forecasts valid18t" Feb 2022 12UTC)
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UK heatwave 2022
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Cold snap over northern Europe Feb 2023
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Potential discrimination ability (ROC area) for day 6 forecasts

IFS —red
warm summer day PanguWeather - blue cold winter days

80”' 85!!1 goth | 1 10th 15”1 20fh
climatology percentile climatology percentile

PanguWeather better for both warm and cold extremes, based on climatological threshold from own climate
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Tropical cyclones Idalia and Franklin (day 2 forecasts, valid on 30 Aug 2023 O0UTC)
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Tropical cyclone verification

Position error Intensity bias
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What the ML forecasts are showing: potential gain in time and energy

ECMWF HRES: Pangu:
" b'III'ERASI . 180 000 ($90) 0.3 (<¢1)
illion (one off) per forecast per forecast

($7.4Mio (compute only))

_opernicus

Europe’s eyes on Earth
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Day 4 forecasts over Europe (valid 7 Sept 2023 12UTC )

) -~ o7 N B | J D - S S = N N
/;/ e~ /\"‘ T } i f »{ ) \ :\*\ SN K \/ ///' % P25 v N T
: /// ’h—‘\ ¢ > 4 iy X by N \ T’/ 4/// 7; - \\\\\\ ‘-,"'
~\. 0\ N ‘ 0y - N . A 5 I Y {
N ~ - .: N \i’\m ,' 9 e / \ 2 3 v . \ 4 | -







+60h forecasts over Europe (valid 21 Sept 2023 12UTC )

PanguWeather

FourCastNet

Total precipitation over the last 6 hours (mm) X
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Summary/Outlook

Very good scores for PanguWeather initialised from ECMWF analysis

Temperature extremes, cyclogenesis of both extra-tropical and tropical cyclones can be
captured

Similar perturbation growth rate from initial perturbations on synoptic scales

Problem with structure of very intense cyclones
Smooth small scales

Many don’t predict precipitation and there has been limited evaluation
Missing model uncertainty in ensemble mode
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Results in this talk are mainly from:

d I'X]_V > physics > arXiv:2307.10128 Help | Advanced ¢
Physics > Atmospheric and Oceanic Physics
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