# A machine learning revolution for weather forecasting?

#### Matthew Chantry

Zied Ben Bouallegue, Linus Magnusson, Simon Lang, Mark Rodwell, Mariana Clare, Mihai Alexe, Jesper Dramsch, Baudouin Raoult, Florian Pinault, Florian Pappenberger and many many more

Climate Char Service

#### What's behind the boom in machine learning?

- Big advances in machine learning architectures, training algorithms and frameworks.
  - Transformer architectures.
  - Self-supervised training, diffusion modelling.
  - PyTorch (and others) with huge community and big-tech support.
- Big advances in computational power.
  - GPUs and other accelerators.
  - NVIDIA (and others) investing in improving the efficiency of basic algorithmic components.
- Consuming huge amounts of data.
  - OpenAI (and others) have trawled the web for all text/images etc.
  - Bad data will lead to bad models.

## What kind of things are people using ML to do in the earth system?

Just about everything!

#### Machine learning automated anomaly attribution



#### Hybrid NWP+ML – collaboration with CEREA, France

 <u>Hybrid</u> models augment standard <u>physics-based</u> models with a <u>data-driven</u> component:

 $\mathbf{x}_{k+1} = \mathbf{M}^{phys}(\mathbf{x}_k) + \mathbf{F}^{stat}(\mathbf{x}_k, \mathbf{p})$ 

- A hybrid model is already used in the ECMWF weak constraint 4DVar analysis. Can the hybrid model approach be extended to the forecast?
- Bonavita & Laloyaux, 2020 <u>trained offline</u> a neural network (NN) to learn model errors, showing improved forecast skill scores in the full IFS
- Farchi et al., 2022 developed this idea introducing online training of the NN inside 4DVar: this outperforms results from offline training in simplified models.
- Current work, testing in the full IFS: results appear promising!

Introduction of bias correction within 4D-var improved stratospheric representation. Next step NN trained within 4D-var...



Alban Farchi & Marc Bocquet @ CEREA

#### Using neural network emulators



#### PoET – Postprocessing Ensembles with Transformers (collaboration with Microsoft)



- Improving 2m-temperature ensemble predictions.
- Using transformers to debias and improve the calibration of forecasts.
- Forecasts have smaller bias and better calibration, and compares favourably to a leading method from statistical postprocessing.

Jonathan Weyn, Microsoft Visiting Scientist at ECMWF

#### 😂 ECMWF 🚍 💵 📧 🚼 🚍 📰 💵 🚍 🖽 🔳 💵 🚍 🚍 🔚 💷 🖾 🖾 🖾 🖾 🖬 🖬 🖾 🖾 🖾 🖾 🗰 🗰 🗮 🕷 💷

#### What's behind the boom in machine learning?

• Big advances in machine learning architectures and training algorithms.

• Big advances in computational power.

- Consuming huge amounts of data.
  - Learning from observations is hard.
    - Data is stored in many different places, and formats.
    - Observations change over time.
    - Data has biases and errors.
    - Requiring multiple variables can mean using multiple observation datasets.

### Reanalysis for machine learning

- Reanalysis provides singular point of "truth".
- Many variables.
- All times.
- All points in space.
- All accessible from one access point.



#### Is reanalysis sufficient to learn a global forecasting system?

#### Simple problem framing.

- Given state of ERA5 at a random point in time, x(t).
- Construct a model F, a neural network parametrised by weights.
- Predict a future state of ERA5, x(t+dt)  $\simeq$  F(x).
- Seek to minimise [ x(t+dt) F(x(t)) ] <sup>2</sup> using gradient descent.
  - i.e. change the weights in such a way to decrease the MSE.
- Randomly draw a new x and repeat.

#### Is reanalysis sufficient to learn a global forecasting system?

#### Simple problem framing.

- Given state of ERA5 at a random point in time, x(t). Typically u, v, t, z, q on ~10 pressure levels and 2t, 10u/v, sp.
- Construct a model F, a neural network parametrised by weights. Big models, O(10<sup>7</sup>) parameters.
- Predict a future state of ERA5, x(t+dt)  $\simeq$  F(x). Typically 6-hour timestep!
- Seek to minimise [ x(t+dt) F(x(t)) ] <sup>2</sup> using gradient descent.
  - i.e. change the weights in such a way to decrease the MSE.
- Randomly draw a new x and repeat. Many many times, passing through ERA5 O(100) time

# a very busy and FAST evolving landscape

|                                                                                                                                                                                      |                                                                                                                                                                                                           | Deepmind –<br>GraphCast<br>0.25° 6-hour<br>Many variable<br>and pressure<br>levels with<br>comparable sk<br>to IFS.                   | s<br>kill<br>FengWu –<br>China academia +<br>Shanghai Met<br>Bureau<br>0.25° 6-hour product<br>Improves on<br>GraphCast for<br>Ionger leadtimes<br>(still deterministic) | NVIDIA – SFNO<br>0.25° 6-hour<br>product<br>Extension of<br>FourCastNet to<br>Spherical<br>harmonics,<br>improved stability |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                      |                                                                                                                                                                                                           | Extensive predict                                                                                                                     | ions 7-day+ scores improve                                                                                                                                               | e Spherical harmonics                                                                                                       |
|                                                                                                                                                                                      |                                                                                                                                                                                                           |                                                                                                                                       |                                                                                                                                                                          | Jun 2023                                                                                                                    |
| 2018 ECMWF's ML<br>scientific publication<br>ECMWF's<br>Peter Dueben<br>and Peter Bauer<br>publish a paper<br>on using ERA5<br>at ~500km<br>resolution to<br>predict future<br>z500. | Feb 2022<br>Full medium-range NWP<br>Keisler - GraphNN<br>1°, competitive<br>with GFS<br>NVIDIA –<br>FourCastNet<br>Fourier+ , 0.25°<br>O(10 <sup>4</sup> ) faster &<br>more energy<br>efficient than IFS | Nov 2022<br>Tropical cyclones<br>Huawei –<br>PanguWeather<br>0.25° hourly<br>product<br>"More<br>accurate<br>tracks" than<br>the IFS. | Jan 2023<br>Global & Limited Area<br>Microsoft –<br>ClimaX<br>Forecasting<br>various lead-<br>times at<br>various<br>resolutions,<br>both globally<br>and regionally     | Diffusion modelling<br>Alibaba –<br>SwinRDM<br>0.25° 6-hour<br>product<br>Sharp spatial<br>features                         |

😌 ECMWF 🚍 📕 💌 🚼 🔲 🚍 📇 📕 📕 📕 📕 🔳 📰 🚍 🔚 💷 🔚 🖬 🖾 🔛 🐘 🔲 🖾 🔛 🔛 🔤 🔤 🔤 🛄 🔟 🗮 💥 🔲 🖾 12

# What ML models are showing...

# Day 4 forecasts over Europe (valid 7 Sept 2023 12UTC)



850 hPa temperature (C) -80 -70 -60 -52 -48 -44 -40 -36 -32 -28 -24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24 28 32 36 40 44 48 52

500 hPa geopotential (dm)

## **Time-series of day 6, RMSE over Europe**

Same starting point....similar results



#### What the analysis is showing: an undeniable skill



- 😂 ECMWF 🚍 💵 📧 ዙ 🚍 📰 💵 🚍 📇 💵 💵 🚍 🚍 🔚 💷 🔚 🖬 🖬 🖾 🖆 🖾 🖬 🖬 💷 👫 📔 🖾 🔚 🚾 👘 🚾 👘 👘 💷

## Digging into the scores: RMSE, bias and forecast variability DJF 2022/2023



#### Why is the RMSE lower in PanguWeather?

- Not a clear reduction in forecast activity in PanguWeather
  - ...but smoothing of small scales
- Strong model drift in Pangu
  - ...but regional biases are improved

Scope for further investigations to understand the differences

# What about high-impact events?

#### Storm Eunice (2.5-day forecasts valid18<sup>th</sup> Feb 2022 12UTC)



😂 ECMWF 🚍 📕 🗷 🕂 🚍 🚼 🔳 💻 🚝 👭 📕 🔳 🚍 🚍 🚟 💷 🖾 🖬 🖬 🖬 🖾 🖾 🖆 💶 👫 📒 🔤 🖾 🗰 🗰 🗰 🗰 🕷 📕 🚾 19

#### UK heatwave 2022



#### 2m temperature Heathrow 19 July 12UTC



😌 ECMWF 🚍 📕 💌 🚼 🚍 📰 📕 📕 📕 📕 📕 📕 💻 🚍 🚍 🔚 🖬 🖾 🖾 🖆 🖾 🖬 🖾 🔛 🐘 🚍 🔤 🚍 🔲 🗰 💥 🚺 🚾 🙎

#### **Cold snap over northern Europe Feb 2023**



#### 2m temperature Sodankyla 22 February 00UTC

**C**ECMWF 21

#### Potential discrimination ability (ROC area) for day 6 forecasts



PanguWeather better for both warm and cold extremes, based on climatological threshold from own climate

## Tropical cyclones Idalia and Franklin (day 2 forecasts, valid on 30 Aug 2023 00UTC)









#### Tropical cyclone verification



**C**ECMWF ₩ +-÷ 0 24 ŝ • C\* Ж . ------

#### What the ML forecasts are showing: **potential gain in time and energy**

**ECMWF HRES**: Pangu: ERA5: 180 000 (\$90) 0.3 (<¢1) 15 billion (one off) per forecast per forecast (\$7.4Mio (compute only)) CUS

# Day 4 forecasts over Europe (valid 7 Sept 2023 12UTC)



850 hPa temperature (C) -80 -70 -60 -52 -48 -44 -40 -36 -32 -28 -24 -20 -16 -12 -8 -4 0 4 8 12 16 20 24 28 32 36 40 44 48 52

500 hPa geopotential (dm)

# Day 4 forecasts over Europe (valid 7 Sept 2023 12UTC)



500 hPa geopotential (dm)

## +60h forecasts over Europe (valid 21 Sept 2023 12UTC)



PanguWeather



#### FourCastNet

Total precipitation over the last 6 hours (mm)
2 4 10 25 50 100 2

### Summary/Outlook

- Very good scores for PanguWeather initialised from ECMWF analysis
- Temperature extremes, cyclogenesis of both extra-tropical and tropical cyclones can be captured
- Similar perturbation growth rate from initial perturbations on synoptic scales
- Problem with structure of very intense cyclones
- Smooth small scales
- Many don't predict precipitation and there has been limited evaluation
- Missing model uncertainty in ensemble mode

# What's next?

# Results in this talk are mainly from:

| arxiv > physics > arXiv                                                                                                                                                                                                                                                                                          | r:2307.10128                                            | Search<br>Help   Advanced S |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------|--|--|--|
| Physics > Atmospheric and                                                                                                                                                                                                                                                                                        | d Oceanic Physics                                       |                             |  |  |  |
| [Submitted on 19 Jul 2023]<br>The rise of data-d                                                                                                                                                                                                                                                                 | riven weather forecasting                               |                             |  |  |  |
| Zied Ben–Bouallegue, Mariana C A Clare, Linus Magnusson, Estibaliz Gascon, Michael Maier–Gerber, Martin Janousek, Mark Rodwell, Florian Pinault,<br>Jesper S Dramsch, Simon T K Lang, Baudouin Raoult, Florence Rabier, Matthieu Chevallier, Irina Sandu, Peter Dueben, Matthew Chantry, Florian<br>Pappenberger |                                                         |                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                  |                                                         |                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                  | ECMWF Newsletter 176 • Summer 2023                      |                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                  | news                                                    |                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                  | Exploring machine-learning forecasts of extreme weather |                             |  |  |  |
|                                                                                                                                                                                                                                                                                                                  | Linus Magnusson                                         |                             |  |  |  |