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Flood forecasting at Google
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Streamflow prediction



It’s not that different!

precipitation,
temperature,
catchment characteristics,
…

streamflow



Kratzert et al.: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets, Hydrol. Earth Syst. Sci., 2019.

It works!
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More data: more gauges

Kratzert et al.: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets, Hydrol. Earth Syst. Sci., 2019.



More data: more gauges



More data: more forcings

Kratzert et al.: A note on leveraging synergy in multiple meteorological data sets with deep learning for rainfall–runoff modeling, Hydrol. Earth Syst. Sci., 2021.



More data: more forcings
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More data: at Google
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basin 1

basin 2
forcing group 1

product starts later

Dealing with missing data

forcing group 2

basin 1

basin 2

model robust against missing inputs

forcing group 3

basin 1

basin 2

model not robust

local product for other basins

product has an outage

Gauch et al.: How to deal w___ missing input data, EGUsphere [preprint], 2025.



Masked mean embedding
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Gauch et al.: How to deal w___ missing input data, EGUsphere [preprint], 2025.
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An early deep learning hydro model (~2021)
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Google’s hydro model today
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Using real-time streamflow
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Using real-time streamflow
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LSTM

masked mean
day 1

LSTM…

masked mean
day 356 h 24

output

LSTM

masked mean
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…

daily hourly

Efficient hourly predictions: multi-timescale LSTM

Gauch et al.: Rainfall–runoff prediction at multiple timescales with a single Long Short-Term Memory network, Hydrol. Earth Syst. Sci., 2021.
Acuña Espinoza et al.: An approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell, EGUsphere [preprint], 2024.



Tricks of the trade
Basics:
More data

Missing data:
Masked mean embedding

Forecasting:
Avoiding “hairs”

Real-time 
streamflow:

Using observations as inputs

Temporal 
resolution:

Multi-timescale LSTM





Sources: Esri, Airbus DS, USGS, NGA, NASA, CGIAR, N Robinson, NCEAS, NLS, OS, NMA, Geodatastyrelsen, Rijkswaterstaat, GSA, Geoland, FEMA, Intermap and the GIS user community

Streamflow prediction



Hydrologic model: Long-Short Term Memory (LSTM)

Geophysical catchment 
characteristics 
(HydroSheds)

Weather forecasts 
(ECMWF, GraphCast)

Real-time precipitation 
estimates

(NASA, NOAA)
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…

streamflow



(Semi-)Distributed Modeling
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Prediction in ungauged basins

Kratzert et al.: Toward improved predictions in ungauged basins: Exploiting the power of machine learning, Water Resources Research, 2019.



Comparison to the EU’s GloFAS

Nearing et al.: Global prediction of extreme floods in ungauged watersheds, Nature, 2024.



Predicting extreme events

Frame et al.: Deep learning rainfall–runoff predictions of extreme events, Hydrol. Syst. Sci., 2022.


