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Bernstein Quantile Networks

… is a flexible method for distributional regression of continuous variables

● Bernstein polynomial as predictive quantile distribution 

● Neural network to link distribution to input variables 

● Estimation by minimising quantile loss averaged over predefined 

quantile levels
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Bernstein coefficients of ensemble

Input layer with 
multiple variables 
of each member

Control member

Ordered mbr #1

Ordered mbr #2

….

Ordered mbr #M

Bias correction 
layers

Shared weights for 
exchangeable 
members

Aggregation / 
combination layers

Output layer with 
Bernstein 
coefficients



Statistical challenges with precipitation

Continuous variable with a (large) point mass at zero

● mixed distributed

● need special attention

Modelling options

● discretisation of precipitation  →  categorical modelling

● separate models for the zeros (discrete) and the positive amounts (continuous)
○ predictive distribution by combination of the two models

● continuous model where zeros are treated as censored values
○ introduce a latent variable with no lower bound 

○ adjust loss function

○ truncate at zero (non-positive part = probability of no precipitation)



Censored Bernstein Quantile Networks

Alternative 1: with prob of precip

● make a model for probability of precipitation p(x) 

○ neural network, logistic regression, use of 

ensemble/scenarios, climatology etc.

● 1st epoch of BQN training

○ compute quantile loss only over levels τ and cases x 

where p(x) > 1 - 𝜏, ∀𝜏,x  

● Remaining epochs

○ compute quantile loss for positive quantiles, i.e. 

over levels τ and cases x where Q(𝜏|x) > 0, ∀𝜏,x

Censored linear single-quantile regression, Friederichs and Hense (2007)
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● make a model for probability of precipitation p(x) 

○ neural network, logistic regression, use of 

ensemble/scenarios, climatology etc.

● 1st epoch of BQN training

○ compute quantile loss only over levels τ and cases x 

where p(x) > 1 - 𝜏, ∀𝜏,x  

● Remaining epochs

○ compute quantile loss for positive quantiles, i.e. 
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Alternative 2: without prob of precip

● all epochs

○ compute quantile loss for positive quantiles, i.e. 

over levels τ and cases x where Q(𝜏|x) > 0, ∀𝜏,x

○ Note! random initialisation of network parameters 

implies random number of negative quantiles

Censored linear single-quantile regression, Friederichs and Hense (2007)



Example: 6h-precipitation forecasting

Data

● 70 Norwegian stations

● 00+66h ECMWF ENS reforecasts (11 members)
○ ensemble means of total precipitation, convective 

precipitation, total column cloud liquid water, CAPE, 

wind at 700 hPa

○ standard deviation of total precipitation

○ probability of precipitation

● training (#22997), validation (#5758) and test (#5633) 

datasets
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Methods (variants of BQN)

● no censoring

● censoring with probability input (alternative 1) from
○ neural network

○ logistic regression

○ ensemble

○ climatology

● censoring without probability input (alternative 2)

● 2-model approach
○ Neural net for probability of precipitation

○ BQN for positive precipitation amounts

Model selection/tuning and testing framework

● extensive tuning of each method on validation dataset
○ 4320 configurations trained and evaluated

● 5 best configurations of each method re-trained 5 times
○ predictions on test dataset (#5×5×5633)



Results

BQN method

Quantile Skill Score (%)

Overall Extremes*

No censoring -0.35 0.16

Censoring: Neural net 0.79 1.38

Censoring: Logistic reg. 0.53 0.33

Censoring: Ensemble prb 0.53 0.69

Censoring: Climate 0.45 0.35

Censoring 0.15 -0.32

2-model approach applied as reference

*) Extremes = 3 most extreme ENS cases for each station, 3×70 = 210 cases

A
lt

. 1
A

lt
. 2



Results

BQN method

Quantile Skill Score (%) Brier Skill Score (%)

Overall Extremes*  0 mm 0.05 mm  0.1 mm  10 mm

No censoring -0.35 0.16 -215.80 -5.24 -3.54 -0.14

Censoring: Neural net 0.79 1.38 -2.24 -2.51 -2.65 0.79

Censoring: Logistic reg. 0.53 0.33 -1.86 -2.04 -2.13 0.13

Censoring: Ensemble prb 0.53 0.69 -1.38 -1.44 -1.50 0.03

Censoring: Climate 0.45 0.35 -1.89 -2.00 -2.04 0.44

Censoring 0.15 -0.32 -3.48 -3.83 -3.98 0.14

2-model approach applied as reference

*) Extremes = 3 most extreme ENS cases for each station, 3×70 = 210 cases
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Example: 6h-precipitation forecasting 

Summary

● Ignoring point masses at zero leads to unreliable quantiles
○ in particular for small amounts
○ but overall scores are not much affected

● Various censoring approaches gives about the same 

overall scores
○ useful to have an estimate of prob of precip

● cBQN about 25% (QSS +66h) better than ECMWF ENS 

11-member reforecast
○ Brier skill score for prob of precip > 50%



Extensions to multivariate/scenario generation

Traditional approaches
● re-use of ranks

○ ensemble copula coupling (Bremnes (2007), Schefzik et al (2013))

⋆ ranks of forecast ensemble

○ Schaake shuffling (Clark et al (2004))

⋆ ranks of observation (sub)sets
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Learning dependency structure with deep learning
● learn and fix marginals with cBQN

● create a network to learn dependency structure
○ generative or non-generative for fixed member size

○ optionally with a prior/template

● optimisation by multivariate proper scoring rules
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Learning dependency structure with deep learning
● learn and fix marginals with cBQN

● create a network to learn dependency structure
○ generative or non-generative for fixed member size

○ optionally with a prior/template

● optimisation by multivariate proper scoring rules
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Destination Earth project: On-demand extremes (DE330) 

NWP forecasts at hectometric resolution for expected extreme weather in Europe

Suggested domains for flooding: 17 March 2025

● NWP model run at ∼500 m resolution
○ up to 2-3 days ahead
○ only once a day
○ 4.4 km Global DT NWP at boundary

● Domains are determined on-demand
○ proposals by a triggering algorithm
○ non-static domains

● Single deterministic runs



Destination Earth project: On-demand extremes (DE330) 

NWP forecasts at hectometric resolution for expected extreme weather in Europe

HARMONIE-AROME 500m MEPS control 2500m



Destination Earth project: On-demand extremes (DE330) 

Uncertainty quantification with cBQN (amongst other)

Training against synops – predicting on 500m grid

● Make one cBQN model for any location and 

lead time

● Input variables: NWP variables, lead time, 

orographic info, time of day and year, climate 

variables(?), geographical coordinates.

● Output: Bernstein quantile function at any 

collection of points for lead times up to 2 days 

ahead
○ cBQN model must be evaluated separately for 

each location and lead time of interest
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Training against synops – predicting on 500m grid

● Make one cBQN model for any location and 

lead time

● Input variables: NWP variables, lead time, 

orographic info, time of day and year, climate 

variables(?), geographical coordinates.

● Output: Bernstein quantile function at any 

collection of points for lead times up to 2 days 

ahead
○ cBQN model must be evaluated separately for 

each location and lead time of interest

Downscaling: Global DT (4.4 km) → 500m grid

● Objective: scenarios / ensemble

● cBQN model for marginals

● Separate deep learning model for the 

spatio-temporal dependency structure

● Forecast scenarios can be provided every day 

for any domain



Summary

● Censored Bernstein Quantile Networks works well for probabilistic 

fine-tuning of precipitation forecasts

● BQN can be applied to more or less any non-categorical variable

○ … like streamflow, …

● Current and future work

○ more focus on extremes and distribution tails

○ other network architectures, in particular for gridded data

○ modelling of dependency structures (time, space and between variables)

https://github.com/jbbremnes/BQNet.jl


