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A Bayesian bridge
Bayesian (probabilistic) inference bridges machine learning & data assimilation

Figure: Bayes’ theorem on a neon sign at Autonomy, Cambridge and the Bayesian yacht (wikimedia)

https://commons.wikimedia.org/wiki/File:Bayes%27_Theorem_MMB_01.jpg
https://en.wikipedia.org/wiki/Bayesia_(yacht)


Figure: Hipster cat meme with Rev. Bayes(?) adapted from Richard McElreath’s statistical rethinking.

https://github.com/rmcelreath/stat_rethinking_2024/blob/main/memes/obscure_theorem_hipstercat.jpg


A Bayesian bridge
Bayesian inference bridges machine learning & data assimilation 1

Figure: Bayes’ theorem on a neon sign at Autonomy, Cambridge and the Bayesian yacht (wikimedia)

Not an obscure idea, see e.g.: Geer (2021) Abarbanel (2022) Murphy (2023)
Evensen et al. (2022) Sanz-Alonso et al. (2023) MacKay (2003) Neal (1996)

1As well as the closely related fields of inverse modeling and geostatistics.

https://commons.wikimedia.org/wiki/File:Bayes%27_Theorem_MMB_01.jpg
https://en.wikipedia.org/wiki/Bayesia_(yacht)






Google’s GenCast is a probabilistic ML model (Price et al., 2025)



Figure: ECMWF’s ERA5 reanalysis produced using DA (Hersbach et al., 2020) is vital for training.

https://www.ecmwf.int/en/about/media-centre/focus/2023/fact-sheet-reanalysis


Figure: The CNN ‘AlexNet’ (Krizhevsky et al., 2012) sparked the deep learning revolution. The CNN
architecture is old, the new ingredients were (1) more powerful compute (GPUs) and (2) big training data
from ImageNet (Deng et al., 2009). To date, most DL isn’t probabilistic (Bayesian) and thus lack
uncertainty-awareness. Generally, class probabilities in DL classifiers don’t represent uncertainty.



Deep learning needs uncertainty-awareness (Papamarkou et al., 2024), e.g. to
expose bullshit (hallucination) in LLMs



Check out: thebullshitmachines.com

https://thebullshitmachines.com/


Probabilistic Machine Learning (PML)2

y = M(x,θ)︸ ︷︷ ︸
MLModel

+

Error︷︸︸︷
ε (1)

Learn a forward map from inputs x to outputs y by inferring model
parameters θ from the training set D = {(xn,yn)}Nn=1

p(θ|D)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(D|θ) p(θ)︸︷︷︸

Prior

/

Evidence︷︸︸︷
p(D) (2)

the posterior p(θ|D) is used in M to make predictions3 with new inputs x.
PML models M: NNs (MLP, CNN, LSTM, Transformer), GPs, BART.

Plug-in approximations using loss-based ‘optimal’ θ̂ recover standard ML.
2Supervised learning, but most of ML can be cast probabilistically (Murphy, 2023).
3Called ‘inference’ in ML/DL jargon, but prediction is strictly more correct.



Probabilistic machine learning example
Using a tailored Gaussian process (infinite width neural net, Neal (1996))

Figure: Synthetic ‘toy’ example of 1D Gaussian process regression with well calibrated uncertainty
estimates. The 3σ posterior credible interval (purple) encompasses the true latent signal (black line) by
training on sparse noisy data (yellow dots). The 3σ posterior predictive interval (red) contains all the
training data without being under-confident. Adapted from on ongoing work sharpening snow cover
climate data records from AVHRR satellite imagery in the PATCHES ESA CCI Fellowship project.

https://www.mn.uio.no/geo/english/research/projects/patches/


Bayesian Data Assimilation (DA)4

y = H(

ProcModel︷ ︸︸ ︷
M(θ) )︸ ︷︷ ︸

ObsModel

+ε = G(x,θ)︸ ︷︷ ︸
ForwardModel

+

Error︷︸︸︷
ε (3)

Infer an inverse map from noisy data y to hidden states x = M(θ)
and/or parameters θ by assimilating5 available data D = y1:N

p(θ|D)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
p(D|θ) p(θ)︸︷︷︸

Prior

/

Evidence︷︸︸︷
p(D) (4)

for posterior prediction & reanalysis x = M(θ) constrained by data y.
The process model M can be mechanistic, empirical, or hybrid.

Applied DA uses particle, ensemble Kalman, and variational methods.
4A strong constraint forcing formulation, see extensions in Evensen et al. (2022)
5In Bayesian DA, ‘assimilating’ is formally equivalent to ‘conditioning on’ (| symbol)



Bayesian data assimilation example
Snow reanalysis using DA: Inferring snow mass from snow cover

Figure: Real example assimilating noisy satellite retrievals of the fractional snow-covered area (fSCA) y
(left, circles) updates the prior (red) to the posterior (blue) to improve state estimates x, i.e. both the
(gap-free and denoised) fSCA (left panel) and the unobserved snow mass (SWE, right panel) compared to
independnet ground truth (black triangles). Adapted from ongoing work on snow reanalysis in PATCHES .

https://www.mn.uio.no/geo/english/research/projects/patches/


Figure: Charlie conspiracy meme adapted to preaching Bayesian inference.



Learning to assimilate

Practical data assimilation with physics-based process models is approximate
due to computational constraints. Machine learning can help by e.g.:
▶ Improving DA-based inference using emulation and sampling at little

extra cost as shown earlier by Lasse (Keetz et al., 2024).
▶ Rapidly spatially interpolating temporal DA, adding value to new

satellite-based snow depth data (Guidicelli et al., 2024).
▶ Learning to mimic DA updates, leading to large speed-ups in

operational snow hydrological forecasts (Blandini et al., 2025).
We will focus on the last two.



Example 1: Rapid spatio-temporal snow reanalysis (Guidicelli et al., 2024)



Figure: Study area and reference snow data in (Guidicelli et al., 2024).



Figure: Complete spatial inputs used in Guidicelli et al. (2024) for snow reanalysis with a deep Feedforward
Neural Network (FNN). The FFN was trained on SWE from temporal DA along ICESat-2 like tracks.



Figure: SWE results from the (‘3D’) spatio-temporal reanalysis in Guidicelli et al. (2024) using a FNN
trained on sparse (along tracks) posteriors from DA. Reference SWE (cols 1 & 2), FNN-DA reanalysis (col
3), and ref vs. reanalysis scatter plots (col 4).



Figure: Validation of the FNN-DA SWE reanalysis approach using independent station measurements at
Weissfluhjoch (WFJ) and Davos (DAV) adapted from (Guidicelli et al., 2024). Note that the FNN-DA
method estimates both the posterior mean µ and a measure of uncertainty by estimating both the
posterior standard deviation σ estimate and by using MC dropout in the FNN to obtain sd(µ).



Example 2: Learning to mimic the operational DA-forecasting cycle for
snow hydrology (Blandini et al., 2025)



Figure: Study sites considered in Blandini et al. (2025). Left: Reynolds Mountain East (RME) in the US;
Center: Col De Porte (CDP) in France, Weissfluhjoch (WFJ) in Switzerland, Torgnon (TRG), Aosta in
Italy, Kühtai (KHT) in Austria, and Sodankylä (FMI-ARC) in Finland; Right: Nagaoka (NGK) in Japan.
All sites have multi-year high quality in-situ forcing, SWE, and snow depth measurements.



Figure: Workflow in Blandini et al. (2025). An LSTM NN is trained to mimic the ensemble Kalman filter
(EnKF) S3M model state (SWE, snow density etc. . . ) analysis (updates) when assimilating snow depth
and SWE measurements. Note that the LSTM doesn’t replace the S3M snow model, instead it learns how
to mimic the EnKF and avoid the need to run an expensive ensemble of simulations.



Figure: Performance of the LSTM-DA method in Blandini et al. (2025)for a subset of the sites on an
operational test (i.e. not part of the training) period. Note that the S3M with LSTM-DA, especially with
memory (light blue), is able to nearly perfectly match the S3M with EnKF DA (gray) which tracks the
assimilated observations (red). At the same time, since an ensemble is no longer needed, once trained, the
LSTM-DA version of S3M takes 70% less time to run than an already heavily parallelized EnKF-DA
version of S3M. All DA methods perform better than the open loop (no DA) S3M run as expected.



Figure: Transferability of LSTM-DA in Blandini et al. (2025): taking the LSTM-DA trained on one site
and testing with S3M at other sites. The performance of local LSTM-DA (trained and tested on the same
site) is on the x-axis while the corresponding performance of transferred LSTM-DA (trained and tested on
different sites) is on the y-axis. Transfered LSTMs below the 1 : 1 line are better than the local LSTMs.
Shapes show the test sites (and local LSTM) and the colors show the training sites of transferred LSTMs.
This is a lower bound on the performance of multi-site LSTMs that (Blandini et al., 2025) tested.



Assimilating to learn

Machine learning can be made uncertainty-aware using probabilistic
methods. Methods from Bayesian data assimilation can help through e.g.:
▶ Ensemble-based Bayesian deep learning to infer carbon fluxes by

fusing footprint analysis and eddy covariance (Pirk et al., 2024).
▶ Filtering probabilistic rewards for reinforcement learning to

teach drones how to locate gas sources (van Hove et al., 2024).



Example 3: Deep ensemble carbon flux inference (Pirk et al., 2024)



Figure: The study site in Pirk et al. (2024), namely the degrading permafrost peatland at Is̆koras palsa
mire near Karasjok in Finnmark, Norway. Since March 2019 an eddy covariance flux tower has measured
spatially aggregated carbon fluxes at this site from a dynamic mixed footprint consisting of fens, ponds,
and a palsas. The goal with this study was to disaggregate these carbon fluxes to provide dynamic and
uncertainty-aware estimates of the contributions from each surface type.



Training a tailored Bayesian deep neural net without backprop

Figure: Panel a): The flux tower with a sonic anemometer and gas analyzer. Panel b): Architecture of
the ‘deep ensemble’ Bayesian feedforward neural networks (5 hidden layers) used to disaggregate CO2

and methane fluxes at Is̆koras. Here the > 104 network weights and biases θ are probabilistic and inferred
(i.e. trained) using a gradient–free iterative ensemble Kalman smoother. This is combined with a
‘physics-informed’ component with deterministic dynamic footprint weights wpalsa(t), wponds(t), wfen(t) to
allow surface-specific fluxes in the pen-ultimate output layer to be inferred from the aggregated eddy
covariance fluxes in the final output layer.



Figure: The carbon budget of the degrading permafrost peatland in terms of CO2 (left) and methane
(right) flux for the respective surface types as inferred from the deep ensemble. Note that flux data
contains considerable gaps, so in addition to the surface type disaggregation this method also allows us to
fill gaps to obtain continuous estimates of carbon flux for this ecosystem. Crucially, this probabilistic
method also provides uncertainty quantification. The equation shows how the surface-specific fluxes are
related to the aggregated flux measured in the dynamic eddy tower footprint through the footprint
weights. Adapted from (Pirk et al., 2024)



Figure: Qualitative validation of the deep ensemble carbon flux inference using independent measurements
from the supplement of (Pirk et al., 2024). A more quantitative validation is available in the supplement.



Example 4: Bayesian filtering of probabilistic rewards for reinforcement
learning in van Hove et al. (2024)building on van Hove et al. (2023).

The drone-based flux filtering problem is presented in van Hove et al. (2025).



PlumeConcentration = G (Surface Flux) + ϵ (5)

Figure: Setup for drone-based flux inversion using Bayesian filtering from van Hove et al. (2025). The task
is to infer greenhouse gas (e.g. CO2, methane) emissions from sources such as livestock by measuring
concentrations in downwind plumes using drones and performing a model inversion to infer the flux.



Figure: In a pilot study van Hove et al. (2023)showed that tabular reinforcement learning (RL) can help
identify more informative flight paths compared to ‘expert’ designs such as lawnmower patterns. Negative
entropy (reductions in the uncertainty of the filtering posterior) turned out to be a promising reward for
RL in line with information gain in the experimental design literature. Left: An expert flight path (gray)
versus RL-trained flight paths (orange, green, blue). Right: The corresponding filtering distributions, note
that these get much narrower and constrained around the true flux for the RL-trained paths. Here only the
source strength (flux) was uncertain, the location and meteorological parameters are assumed known.



Figure: In the follow up study van Hove et al. (2024)this setup was extended to jointly infer both the
source strength (flux) location while mmoving away from tabular RL to deep RL which is more applicable
to higher dimensional problems. The ‘offline’ but far-sighted deep RL approach was compared to an
‘online’ infotaxis that relies on local information gradients and is thus myopic. Here too the negative
entropy was used as the reward. Left: Example flight paths from infotaxis (green) and deep RL (purple).
Right: The corresponding evolution of the entropy (negative reward) for these flight paths, note that a
lower (cumulative) entropy is a sign of better performance in line with the deep RL-trained flight correctly
identifying the source.



Figure: Validation of the experiments in van Hove et al. (2024). Left: Deep RL outperformed infotaxis for
all (non-dimensional) flux magnitudes that we tested. Right: Deep RL always had less than or equal
DRPS (a probablistic error score, lower is better) than the infotaxis strategy for all settings of the
meteorological parameters. Future work plans to extend this to the multi-drone setting.



Figure: Here to help https://xkcd.com/1831/.

https://xkcd.com/1831/


‘You cannot do inference without assumptions’ (MacKay, 2003)

Figure: Turtles all the way down (Imagen3) wikipedia.org/wiki/Turtles_all_the_way_down

https://en.wikipedia.org/wiki/Turtles_all_the_way_down


References
Abarbanel, H. (2022). The Statistical Physics of DA and ML. CUP. doi: 10.1017/9781009024846.
Blandini, G. et al. (2025). Learning to filter: Snow data assimilation using a Long Short-Term Memory network.

EGUsphere [preprint in review at The Cryosphere]. doi: 10.5194/egusphere-2025-423.
Deng, J. et al. (2009). ImageNet: A large-scale hierarchical image database. CVPR. doi: 10.1109/CVPR.2009.5206848.
Evensen, G. et al. (2022). Data Assimilation Fundamentals. Springer. doi: 10.1007/978-3-030-96709-3.
Geer, A. J. (2021). Learning ESMs from observations: ML or DA? Phil. Trans. R. Soc. A. doi: 10.1098/rsta.2020.0089.
Guidicelli, M. et al. (2024). A combined data assimilation and deep learning approach for continuous spatio-temporal SWE

reconstruction from sparse ground tracks. Journal of Hydrology X. doi: 10.1016/j.hydroa.2024.100190.
Hersbach, H. et al. (2020). The ERA5 global reanalysis. QJRMS. doi: 10.1002/qj.3803.
Keetz, L. T. et al. (2024). Inferring parameters in a complex land surface model by combining data assimilation and

machine learning. ESSOA [preprint in review at JAMES]. doi: 10.22541/essoar.172070530.05098424/v1.
Krizhevsky, A. et al. (2012). Imagenet classification with deep convolutional neural networks. In Advances in Neural

Information Processing Systems, volume 25. url: proceedings.neurips.cc.
MacKay, D. J. C. (2003). Info. Theory, Inference, and Learning Algs. CU. url: inference.org.uk/itprnn/book.pdf.
Murphy, K. P. (2023). Probabilistic Machine Learning: Advanced Topics. MIT. url:probml.github.io/book2.
Neal, R. (1996). Bayesian Learning for Neural Networks. Springer. doi: 10.1007/978-1-4612-0745-0.
Papamarkou, T. et al. (2024). Position: Bayesian deep learning is needed in the age of large-scale AI. In Proc. 41st

International Conference on Machine Learning. PMLR. url: pmlr/v235/papamarkou24b.html.
Pirk, N. et al. (2024). Disaggregating the Carbon Exchange of Degrading Permafrost Peatlands Using Bayesian Deep

Learning. Geophyiscal Research Letters. doi: 10.1029/2024GL109283.
Price, I. et al. (2025). Probabilistic weather forecasting wtih machine learning. Nature. doi: 10.1038/s41586-024-08252-9.
Sanz-Alonso, D. et al. (2023). Inverse Problems and Data Assimilation. CUP. doi: 10.1017/9781009414319.
van Hove, A. et al. (2023). Using RL to improve drone-based inference of GHG fluxes. NMI. doi: 10.5617/nmi.9897.
van Hove, A. et al. (2024). Guiding drones by information gain. In Proc. 5th NLDL. PMLR. url: pmlr/v233/hove24a.html.
van Hove, A. et al. (2025). Inferring methane emissions from African livestock by fusing drone, tower, and satellite data.

EGUsphere [preprint in review at Biogeosciences]. doi: 10.5194/egusphere-2024-3994.

http://dx.doi.org/10.1017/9781009024846
http://dx.doi.org/10.5194/egusphere-2025-423
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1007/978-3-030-96709-3
http://dx.doi.org/10.1098/rsta.2020.0089
http://dx.doi.org/10.1016/j.hydroa.2024.100190
http://dx.doi.org/10.1002/qj.3803
http://dx.doi.org/10.22541/essoar.172070530.05098424/v1
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://inference.org.uk/itprnn/book.pdf
https://probml.github.io/book2
http://dx.doi.org/10.1007/978-1-4612-0745-0
https://proceedings.mlr.press/v235/papamarkou24b.html
http://dx.doi.org/10.1029/2024GL109283
http://dx.doi.org/10.1038/s41586-024-08252-9
http://dx.doi.org/10.1017/9781009414319
http://dx.doi.org/10.5617/nmi.9897
https://proceedings.mlr.press/v233/hove24a.html
http://dx.doi.org/10.5194/egusphere-2024-3994


Thanks to collaborators: J. Agerup (UiO), E. Alonso-González (IPE), L. Bertino (NERSC), G. Blandini (CIMA), W. Cao (UiO), J. Fiddes
(SLF), B. Groenke (AWI), M. Guidicelli (EPFL), G. Guillet (UiO), R. Hock (UiO), L. Keetz (UiO), D. Kreynen (UiO), M. Mazzolini (UiO),

N. Pirk (UiO), D. Treichler (UiO), A. van Hove (UiO), S. Westermann (UiO), C. Willmes (UiO), R. Yang (UiO), Y. Yılmaz (UiO)

Funding@UiO: GLACMASS (ERC), ACTIVATE (ERC), dScience PhD Fellowship (UiO, van Hove), PATCHES CCI Fellowship (ESA, me)



Optimization as crude (‘plugin’) Bayesian inference (Murphy, 2023)

y = G(θ) + ϵ (6)

Gaussian prior: mean θ, covariance C0, and c0 = det(2πC0)
−1/2

p(θ) = N(θ|µ0,C0) = c0 exp

(
−1

2
[θ − µ0]

T C−1
0 [θ − µ0]

)
, (7)

Gaussian likelihood: mean ŷ = G(θ), covariance R, cy = det(2πR)−1/2

p(y|θ) = N(y|ŷ,R) = cy exp

(
−1

2
[y − ŷ]T R−1 [y − ŷ]

)
, (8)

The posterior is p(θ|y) = exp(−J )/Z with Z = p(y) where the cost function

J =
1

2
[θ − µ0]

TC−1
0 [θ − µ0] +

1

2
[y − ŷ]T R−1 [y − ŷ]− log(cyc0) (9)

is the negative log posterior. Minimizing J yields the maximum a posteriori
(penalized maximum likelihood, regularized least squares) solution θ̂.
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