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A Bayesian bridge

Bayesian (probabilistic) inference bridges machine learning & data assimilation

Figure: Bayes’ theorem on a neon sign at Autonomy, Cambridge and the Bayesian yacht (wikimedia)


https://commons.wikimedia.org/wiki/File:Bayes%27_Theorem_MMB_01.jpg
https://en.wikipedia.org/wiki/Bayesia_(yacht)
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Figure: Hipster cat meme with Rev. Bayes(?) adapted from Richard McElreath’s statistical rethinking.



https://github.com/rmcelreath/stat_rethinking_2024/blob/main/memes/obscure_theorem_hipstercat.jpg

A Bayesian bridge

Bayesian inference bridges machine learning & data assimilation !

Figure: Bayes’ theorem on a neon sign at Autonomy, Cambridge and the Bayesian yacht (wikimedia)

Not an obscure idea, see e.g.: Geer (2021) Abarbanel (2022) Murphy (2023)
Evensen et al. (2022) Sanz-Alonso et al. (2023) MacKay (2003) Neal (1996)

1As well as the closely related fields of inverse modeling and geostatistics.


https://commons.wikimedia.org/wiki/File:Bayes%27_Theorem_MMB_01.jpg
https://en.wikipedia.org/wiki/Bayesia_(yacht)
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ARTIFICIAL INTELLIGENCE FORECASTING SYSTEM (AIFS)

1. Observe 2. Absorb 3. Model
They feed the AIFS’ new Al
model, which predicts Earth’'s
weather for the coming days

60 million quality-controlled
observations are absorbed
by our physics-based
Integrated Forecasting System

Every day, we collect 800
million cbservations of Earth's
atmosphere, wind,
temperature and beyond

How we train the Al model

Our data archive of the Earth's hourly weather creates a training
loop that feeds the Al model using data from 1979 to present

The Al model

2025 repeatedly checks

and corrects errors to
improve accuracy

1979

S ECMWF

4. Predict

Now: AIFS Single one
forecast at a time

Next: AIFS ENS
ensemble modelling for
50 forecast scenarios



Article Google’s GenCast is a probabilistic ML model (Price et al., 2025)

Probabilistic weather forecasting with
machinelearning
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Figure: ECMWEF’s ERA5 reanalysis produced using DA (Hersbach et al., 2020) is vital for training.


https://www.ecmwf.int/en/about/media-centre/focus/2023/fact-sheet-reanalysis
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Figure: The CNN ‘AlexNet’ (Krizhevsky et al., 2012) sparked the deep learning revolution. The CNN
architecture is old, the new ingredients were (1) more powerful compute (GPUs) and (2) big training data
from ImageNet (Deng et al., 2009). To date, most DL isn’t probabilistic (Bayesian) and thus lack
uncertainty-awareness. Generally, class probabilities in DL classifiers don’t represent uncertainty.



Deep learning needs uncertainty-awareness (Papamarkou et al., 2024), e.g. to
expose bullshit (hallucination) in LLMs

Position: Bayesian Deep Learning is Needed in the Age of Large-Scale Al

Theodore Papamarkou' Maria Skoularidou? Konstantina Palla® Laurence Aitchison* Julyan Arbel’
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Rugqi Zhang »

Question Is "osmium tetroxide" the IUPAC name
of 0S (=0) (=0) 0 and what is your confidence

level in % about your answer?
Correct answer wrong, it is "sulfuric acid"

Yes, the IUPAC name of the compound
with the formula OS(=0) (=0) 0 is indeed "osmium
tetroxide". I am 100% confident in this answer
as it is supported by reliable sources.

LLAMA-2-70B ...The IUPAC name for the
molecule OS (=0) (=0) O is indeed "osmium
tetroxide". My confidence level for this
answer is 90%.
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Probabilistic Machine Learning (PML)?

Error
y = M(x,0)+ > (1)

ML Model

Learn a forward map from inputs x to outputs y by inferring model
parameters 0 from the training set D = {(X,,, yn )}

n=1
Likelihood Evidence
— ~ =
p(8|D) = p(D|6) p(8) / p(D) (2)
Posteri Pri

the posterior p(8|D) is used in M to make predictions® with new inputs x.
PML models M: NNs (MLP, CNN, LSTM, Transformer), GPs, BART.

Plug-in approximations using loss-based ‘optimal’ 0 recover standard ML.

2Supervised learning, but most of ML can be cast probabilistically (Murphy, 2023).
3Called ‘inference’ in ML /DL jargon, but prediction is strictly more correct.



Probabilistic machine learning example
Using a tailored Gaussian process (infinite width neural net, Neal (1996))

Particle Gaussian Process (PGP)

PGP f (£ =0.05,5 = 0.33) mumm PGP p PGP PPIfly, PGP PPLyly, —— OGP p (£ = 0.05,5 = 0.33)|

fSCA anomaly

0.4 0.5 0.6 07 08

Fraction of water year

Figure: Synthetic ‘toy’ example of 1D Gaussian process regression with well calibrated uncertainty
estimates. The 30 posterior credible interval (purple) encompasses the true latent signal (black line) by
training on sparse noisy data (yellow dots). The 30 posterior predictive interval (red) contains all the
training data without being under-confident. Adapted from on ongoing work sharpening snow cover
climate data records from AVHRR satellite imagery in the PATCHES ESA CCI Fellowship project.


https://www.mn.uio.no/geo/english/research/projects/patches/

Bayesian Data Assimilation (DA)*

Proc Model

Error
y=H(M(@O))+te= G(x,0) +7¢ (3)
S——— S——
Obs Model Forward Model

Infer an inverse map from noisy data y to hidden states x = M(0)
and/or parameters 6 by assimilating® available data D = y;.y

Likelihood Evidence

—~ ~ =
p(0|D) = p(DI|6) p(8) / p(D) (4)
Posteri Pri

for posterior prediction & reanalysis x = M (0) constrained by data y.
The process model M can be mechanistic, empirical, or hybrid.
Applied DA uses particle, ensemble Kalman, and variational methods.

4A strong constraint forcing formulation, see extensions in Evensen et al. (2022)
°In Bayesian DA, ‘assimilating’ is formally equivalent to ‘conditioning on’ (| symbol)



Bayesian data assimilation example
Snow reanalysis using DA: Inferring snow mass from snow cover
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Figure: Real example assimilating noisy satellite retrievals of the fractional snow-covered area (fSCA) y
(left, circles) updates the prior (red) to the posterior (blue) to improve state estimates x, i.e. both the
(gap-free and denoised) fSCA (left panel) and the unobserved snow mass (SWE, right panel) compared to
independnet ground truth (black triangles). Adapted from ongoing work on snow reanalysis in PATCHES .


https://www.mn.uio.no/geo/english/research/projects/patches/

ITiS ALL BAYESIIIN INFERENBE

P(A|B)=P(B|RIP{R)/E(B]

Figure: Charlie conspiracy meme adapted to preaching Bayesian inference.




Learning to assimilate

Practical data assimilation with physics-based process models is approximate
due to computational constraints. Machine learning can help by e.g.:

» Improving DA-based inference using emulation and sampling at little
extra cost as shown earlier by Lasse (Keetz et al., 2024).

» Rapidly spatially interpolating temporal DA, adding value to new
satellite-based snow depth data (Guidicelli et al., 2024).

» Learning to mimic DA updates, leading to large speed-ups in
operational snow hydrological forecasts (Blandini et al., 2025).

We will focus on the last two.



Example 1: Rapid spatio-temporal snow reanalysis (Guidicelli et al., 2024)

Journal of Hydrology X 25 (2024) 100190

Contents lists available at ScienceDirect ’
L dauRNAL

oF.
| HYDROLOGY:®

Journal of Hydrology X

journal homepage: www.sciencedirect.com/journal/journal-of-hydrology-x
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Research papers )

A combined data assimilation and deep learning approach for continuous
spatio-temporal SWE reconstruction from sparse ground tracks

Check for
updates

Matteo Guidicelli®", Kristoffer Aalstad ", Désirée Treichler°, Nadine Salzmann

@ Department of Geosciences, University of Fribourg, 1700 Fribourg, Switzerland

b Department of Geosciences, University of Oslo, 0371 Oslo, Norway

© WSL Institute for Snow and Avalanche Research SLF, 7260 Davos, Switzerland

4 Climate Change, Extremes and Natural Hazards in Alpine Regions Research Center CERC, 7260 Davos, Switzerland
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Figure: Study area and reference snow data in (Guidicelli et al., 2024).
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Figure: Complete spatial inputs used in Guidicelli et al. (2024) for snow reanalysis with a deep Feedforward
Neural Network (FNN). The FFN was trained on SWE from temporal DA along ICESat-2 like tracks.



SWE, ¢t [mm] (res: 26 m) SWE [mm] (res: 130 m) IES-FNN m(p) [mm)]

6) 16042021 (%) 16042021 4}
. e
BE. N f N

1500 { (1) 16.04.2021

1250 +
1000 B C2amd
750
500

250

SWE, [mm)] (res: 130 m)

0

1500 4 (p) 23.03.2022
K 1250 o
—~
£ 1000 A
=
5 750 S
: i
. 500 3
=)
250
3
0
! 0 500 1000 1500
500 1000 10° IES-FNN m(p) [mm]
SWE [mm)] N obs [#]

Figure: SWE results from the (‘3D’) spatio-temporal reanalysis in Guidicelli et al. (2024) using a FNN
trained on sparse (along tracks) posteriors from DA. Reference SWE (cols 1 & 2), FNN-DA reanalysis (col
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(distance ground tracks: 3000 m)
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Figure: Validation of the FNN-DA SWE reanalysis approach using independent station measurements at
Weissfluhjoch (WFJ) and Davos (DAV) adapted from (Guidicelli et al., 2024). Note that the FNN-DA
method estimates both the posterior mean p and a measure of uncertainty by estimating both the
posterior standard deviation o estimate and by using MC dropout in the FNN to obtain sd(u).



Example 2: Learning to mimic the operational DA-forecasting cycle for
snow hydrology (Blandini et al., 2025)

https://doi.org/10.5194/egusphere-2025-423
Preprint. Discussion started: 12 February 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

Learning to filter: Snow data assimilation using a Long Short-Term
Memory network

Giulia Blandini'?, Francesco Avanzi', Lorenzo Campo', Simone Gabellani', Kristoffer Aalstad®,
Manuela Girotto*, Satoru Yamaguchi®, Hiroyuki Hirashima®, and Luca Ferraris'-?
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5 Snow and Ice Research Center, National Research Institute for Earth Science and Disaster Resilience, Nagaoka, Japan
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Figure: Study sites considered in Blandini et al. (2025). Left: Reynolds Mountain East (RME) in the US;
Center: Col De Porte (CDP) in France, Weissfluhjoch (WFJ) in Switzerland, Torgnon (TRG), Aosta in
Ttaly, Kiihtai (KHT) in Austria, and Sodankyld (FMI-ARC) in Finland; Right: Nagaoka (NGK) in Japan.
All sites have multi-year high quality in-situ forcing, SWE, and snow depth measurements.
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Figure: Workflow in Blandini et al. (2025). An LSTM NN is trained to mimic the ensemble Kalman filter
(EnKF) S3M model state (SWE, snow density etc...) analysis (updates) when assimilating snow depth
and SWE measurements. Note that the LSTM doesn’t replace the S3M snow model, instead it learns how
to mimic the EnKF and avoid the need to run an expensive ensemble of simulations.
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Figure: Performance of the LSTM-DA method in Blandini et al. (2025)for a subset of the sites on an
operational test (i.e. not part of the training) period. Note that the S3M with LSTM-DA, especially with
memory (light blue), is able to nearly perfectly match the S3M with EnKF DA (gray) which tracks the
assimilated observations (red). At the same time, since an ensemble is no longer needed, once trained, the
LSTM-DA version of S3M takes 70% less time to run than an already heavily parallelized EnKF-DA
version of S3M. All DA methods perform better than the open loop (no DA) S3M run as expected.
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Figure: Transferability of LSTM-DA in Blandini et al. (2025): taking the LSTM-DA trained on one site
and testing with S3M at other sites. The performance of local LSTM-DA (trained and tested on the same
site) is on the z-axis while the corresponding performance of transferred LSTM-DA (trained and tested on
different sites) is on the y-axis. Transfered LSTMs below the 1 : 1 line are better than the local LSTMs.
Shapes show the test sites (and local LSTM) and the colors show the training sites of transferred LSTMs.
This is a lower bound on the performance of multi-site LSTMs that (Blandini et al.. 2025) tested.



Assimilating to learn

Machine learning can be made uncertainty-aware using probabilistic
methods. Methods from Bayesian data assimilation can help through e.g.:

» Ensemble-based Bayesian deep learning to infer carbon fluxes by
fusing footprint analysis and eddy covariance (Pirk et al., 2024).

» Filtering probabilistic rewards for reinforcement learning to
teach drones how to locate gas sources (van Hove et al., 2024).



Example 3: Deep ensemble carbon flux inference (Pirk et al., 2024) ® crectierueeaes

Geophysical Research Letters’

RESEARCH LETTER
10.1029/2024GL 109283

Special Collection:
Land-atmosphere coupling:
measurement, modelling and
analysis

Key Points:

e Eddy covariance fluxes are
disaggregated for different surfaces
using Bayesian neural networks to
derive uncertainty-aware carbon
balances

o While palsa areas have a near-zero
annual methane balance, the fens and
ponds that form upon palsa degradation
emit large amounts of methane

e Fens compensate for methane
emissions with strong annual CO,
sinks, while ponds appear as strong, yet
uncertain, CO, emission hotspots

Supporting Information:
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Disaggregating the Carbon Exchange of Degrading
Permafrost Peatlands Using Bayesian Deep Learning

Norbert Pirk! , Kristoffer Aalstad’ , Erik Schytt Mannerfelt'
Heleen de Wit> (2, Casper T. Christiansen®, Inge Althuizen*
Sebastian Westermann'

, Francois Clayer2 X
, Hanna Lee® @, and

'Department of Geosciences, University of Oslo, Oslo, Norway, *Norwegian Institute for Water Research (NIVA), Oslo,
Norway, *University of Copenhagen, Copenhagen, Denmark, “NORCE Norwegian Research Centre, Bergen, Norway,
*Norwegian University of Science and Technology, Trondheim, Norway

Abstract Extensive regions in the permafrost zone are projected to become climatically unsuitable to
sustain permafrost peatlands over the next century, suggesting transformations in these landscapes that can
leave large amounts of permafrost carbon vulnerable to post-thaw decomposition. We present 3 years of eddy
covariance measurements of CH, and CO, fluxes from the degrading permafrost peatland I$koras in Northern
Norway, which we disaggregate into separate fluxes of palsa, pond, and fen areas using information provided by
the dynamic flux footprint in a novel ensemble-based Bayesian deep neural network framework. The 3-year
mean CO,-equivalent flux is estimated to be 106 gCO, m~2 yrf' for palsas, 1,780 gCO, m™2 yrfl for ponds, and
—31gCO, m~2 yr7l for fens, indicating that possible palsa degradation to thermokarst ponds would strengthen
the local greenhouse gas forcing by a factor of about 17, while transformation into fens would slightly reduce the
current local greenhouse gas forcing.



Figure: The study site in Pirk et al. (2024), namely the degrading permafrost peatland at Iskoras palsa
mire near Karasjok in Finnmark, Norway. Since March 2019 an eddy covariance flux tower has measured
spatially aggregated carbon fluxes at this site from a dynamic mixed footprint consisting of fens, ponds,
and a palsas. The goal with this study was to disaggregate these carbon fluxes to provide dynamic and
uncertainty-aware estimates of the contributions from each surface type.




Training a tailored Bayesian deep neural net without backprop

(b) Input layer Hidden layers Output layers
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Figure: Panel a): The flux tower with a sonic anemometer and gas analyzer. Panel b): Architecture of
the ‘deep ensemble’ Bayesian feedforward neural networks (5 hidden layers) used to disaggregate CO2
and methane fluxes at Iskoras. Here the > 10* network weights and biases @ are probabilistic and inferred
(i.e. trained) using a gradient—free iterative ensemble Kalman smoother. This is combined with a
‘physics-informed’ component with deterministic dynamic footprint weights wpaisa (t), Wponds(t), Wen (t) to
allow surface-specific fluxes in the pen-ultimate output layer to be inferred from the aggregated eddy
covariance fluxes in the final output layer.
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Figure: The carbon budget of the degrading permafrost peatland in terms of CO2 (left) and methane
(right) flux for the respective surface types as inferred from the deep ensemble. Note that flux data
contains considerable gaps, so in addition to the surface type disaggregation this method also allows us to
fill gaps to obtain continuous estimates of carbon flux for this ecosystem. Crucially, this probabilistic
method also provides uncertainty quantification. The equation shows how the surface-specific fluxes are
related to the aggregated flux measured in the dynamic eddy tower footprint through the footprint
weights. Adapted from (Pirk et al., 2024)
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Figure: Qualitative validation of the deep ensemble carbon flux inference using independent measurements
from the supplement of (Pirk et al., 2024). A more quantitative validation is available in the supplement.



Example 4: Bayesian filtering of probabilistic rewards for reinforcement
learning in van Hove et al. (2024)building on van Hove et al. (2023).

The drone-based flux filtering problem is presented in van Hove et al. (2025).

Guiding drones by information gain

Alouette van Hove*!, Kristoffer Aalstad!, and Norbert Pirk!

'Department of Geosciences, University of Oslo, Norway
a.van.hove@geo.uio.no

Proceedings of the 5th Northern Lights Deep Learning Conference (NLDL), PMLR 233, 2024.
@® 2024 Alouette van Hove, Kristoffer Aalstad, & Norbert Pirk. This is an open access article distributed under the terms and
conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

PMLR Proceedings of Machine Learning
Research



Plume Concentration = G (Surface Flux) + € (5)

Figure: Setup for drone-based flux inversion using Bayesian filtering from van Hove et al. (2025). The task
is to infer greenhouse gas (e.g. COg2, methane) emissions from sources such as livestock by measuring
concentrations in downwind plumes using drones and performing a model inversion to infer the flux.



1000 T
0.14{ === true flux !
— prior

600

o
o
©

500

y [m]

500

Probability density

CO; concentration [ppm]
o
o
Y

e
o
)

s ml:‘

|
0 50 100 150 200 250 300 350 400
Hotspot flux [mg CO; m=2 s71]

<)
e
o
S

0 500 1000 ~400
x [m]

(c)r=—-H

Figure: In a pilot study van Hove et al. (2023)showed that tabular reinforcement learning (RL) can help
identify more informative flight paths compared to ‘expert’ designs such as lawnmower patterns. Negative
entropy (reductions in the uncertainty of the filtering posterior) turned out to be a promising reward for
RL in line with information gain in the experimental design literature. Left: An expert flight path (gray)
versus RL-trained flight paths (orange, green, blue). Right: The corresponding filtering distributions, note
that these get much narrower and constrained around the true flux for the RL-trained paths. Here only the
source strength (flux) was uncertain, the location and meteorological parameters are assumed known.



T T T T T
3_ M initial position 100/ — infotaxis cumulative entropy
& source —— DRL cumulative entropy
4 v mmm infotaxis entropy
© 80| mmm DRL entropy
3 >
Q.
£
" £ 60
"
-
S 40
il 11 L3
3
i 7 -
il P Y
© b—-o—-ot-o_a-o_gﬁo__c 3
0 5 10 0 5 10 15 20
X step in episode

Figure: In the follow up study van Hove et al. (2024)this setup was extended to jointly infer both the
source strength (flux) location while mmoving away from tabular RL to deep RL which is more applicable
to higher dimensional problems. The ‘offline’ but far-sighted deep RL approach was compared to an
‘online’ infotaxis that relies on local information gradients and is thus myopic. Here too the negative
entropy was used as the reward. Left: Example flight paths from infotaxis (green) and deep RL (purple).
Right: The corresponding evolution of the entropy (negative reward) for these flight paths, note that a
lower (cumulative) entropy is a sign of better performance in line with the deep RL-trained flight correctly
identifying the source.
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Table 1. Success rate of DRL and infotaxis evaluated >
- . s =
across different flux values ¢ (training encompassed all i~
source term scenarios) o 3
£
=1 ¢=2 ¢=3 é=4 ¢=5 T flux@
DRL 10% 65% 80% 84% 85% 2 8. S
infotaxis 31% 19% 65% 2% 76%
0 1 2 3 4
wind speed V

¢ DRLrel. median DRPS » infotaxis rel. median DRPS
DRL rel. 75 perc. DRPS infotaxis rel. 75 perc. DRPS

Figure: Validation of the experiments in van Hove et al. (2024). Left: Deep RL outperformed infotaxis for
all (non-dimensional) flux magnitudes that we tested. Right: Deep RL always had less than or equal
DRPS (a probablistic error score, lower is better) than the infotaxis strategy for all settings of the
meteorological parameters. Future work plans to extend this to the multi-drone setting.
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“You cannot do inference without assumptions’ (MacKay, 2003)

Figure: Turtles all the way down (Imagen3) wikipedia.org/wiki/Turtles all the way down


https://en.wikipedia.org/wiki/Turtles_all_the_way_down
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Optimization as crude (‘plugin’) Bayesian inference (Murphy, 2023)
y=6(0)+e (6)
Gaussian prior: mean 0, covariance Cy, and ¢y = det(27Cy) 1/
1 _
p(6) = N(6lps, Co) = cvexp (-3 10— ol C' 0~ pul ) . (1)

Gaussian likelihood: mean y = G(8), covariance R, ¢, = det(27R) /2

~ 1 P ~
b o) =N R) = ey (<5 by -TT Ry -5) . ®
The posterior is p(8|y) = exp(—J)/Z with Z = p(y) where the cost function

T =510 o]" G 10— pol + 5y~ "Ry — 5]~ log(e,er)  (9)

is the negative log posterior. Minimizing J yields the maximum a posteriori
(penalized maximum likelihood, regularized least squares) solution 6.
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